
Hydra HeadV1 Specification: Coordinated Head protocol

DRAFT

Sebastian Nagel sebastian.nagel@iohk.io

Sasha Bogicevic sasha.bogicevic@iohk.io

Franco Testagrossa franco.testagrossa@iohk.io

Daniel Firth daniel.firth@iohk.io

April 10, 2025

Contents
1 Introduction 1

2 Protocol Overview 2
2.1 Opening the head . 2
2.2 The Coordinated Head protocol . 3
2.3 Closing the head . 4
2.4 Differences . 4

3 Preliminaries 5
3.1 Notation . 5
3.2 Public key multi-signature scheme . 6
3.3 Extended UTxO . 6

4 Protocol Setup 9

5 On-chain Protocol 10
5.1 Init transaction . 10
5.2 Commit Transaction . 12
5.3 Abort Transaction . 13
5.4 CollectCom Transaction . 14
5.5 Deposit Transaction . 15
5.6 Recover Transaction . 16
5.7 Increment Transaction . 18
5.8 Decrement Transaction . 19
5.9 Close Transaction . 20
5.10 Contest Transaction . 23
5.11 Fan-Out Transaction . 25

6 Off-Chain Protocol 26
6.1 Assumptions . 27
6.2 Notation . 28
6.3 Variables . 28
6.4 Protocol flow . 29
6.5 Rollbacks and protocol changes . 31

7 Security (WIP — Iteration 1) 34
7.1 Proofs . 35

1 Introduction
This document specifies the ’Coordinated Hydra Head’ protocol to be implemented as the first
version of Hydra Head on Cardano - Hydra HeadV1. The protocol is derived from variants
described in the original paper [8], but was further simplified to make a first implementation on
Cardano possible.

1

Note that the format and scope of this document is (currently) also inspired by the paper and
hence does not include a definition of the networking protocols or concrete message formats. It is Add:

network
specifi-
cation
(message
formats)

structured similarly, but focuses on a single variant, and avoids indirections and unnecessary gener-
alizations. The document is kept in sync with the reference implementation available on Github [4].
Red sections indicate that they are currently not covered or missing in the implementation, where
blue parts mean a difference in how it is realized.

First, a high-level overview of the protocol and how it differs from legacy variants of the Head
protocol is given in Section 2. Relevant definitions and notations are introduced in Section 3, while
Section 4 describes protocol setup and assumptions. Then, the actual on-chain transactions of the
protocol are defined in Section 5, before the off-chain protocol part specifies behavior of Hydra
parties off-chain and ties the knot with on-chain transactions in Section 6. At last, Section 7 gives
the security definition, properties and proofs for the Coordinated Head protocol.

2 Protocol Overview
The Hydra Head protocol provides functionality to lock a set of UTxOs on a blockchain, referred to
as the mainchain, and evolve it inside a so-called off-chain head, independently of the mainchain.
At any point, the head can be closed with the effect that the locked set of UTxOs on the main-
chain is replaced by the latest set of UTxOs inside the head. The protocol guarantees full wealth
preservation: no generation of funds can happen off-chain (inside a head) and no responsive honest
party involved in a head can ever lose any funds other than by consenting to give them away. In
exchange for decreased liveness guarantees (stop any time), it can essentially proceed at network
speed under good conditions, thereby reducing latency and increasing throughput. At the same
time, the head protocol provides the same capabilities as the mainchain by reusing the same ledger
model and transaction formats — making the protocol “isomorphic”.

2.1 Opening the head
To create a head-protocol instance, any party may take the role of an initiator and ask other
parties, the head members, to participate in the head by exchanging public keys and agreeing on
other protocol parameters. These public keys are used for both, the authentication of head-related
on-chain transactions that are restricted to head members (e.g., a non-member is not allowed to
close the head) and for signing off-chain transactions in the head.

The initiator then establishes the head by submitting an initial transaction to the mainchain
that contains the Hydra protocol parameters and mints special participation tokens (PT) identifying
the head members. The initial transaction also initializes a state machine (see Fig. 1) that manages
the “transfer” of UTxOs into the head and back. The state machine comprises the four states:
initial, open, closed, and final. A state thread token (ST) minted in initial marks the head output
and ensures contract continuity [6].

Once the initial transaction appears on the mainchain, establishing the initial state initial, each
head member can attach a commit transaction, which locks (on the mainchain) the UTxOs that
the party wants to commit to the head, or deliberately acknowledges to commit nothing.

The commit transactions are subsequently collected by the collectCom transaction causing a
transition from initial to open. Once the open state is confirmed, the head members start running the
off-chain head protocol, which evolves the initial UTxO set (the union over all UTxOs committed

2

pendingdeposit final
increment

recover

initialinit

open closed

final

collect

close

increment

decrement

fanout

contest

abort

Figure 1: Mainchain state diagram for this version of the Hydra protocol.

by all head members) independently of the mainchain. For the case where some head members fail
to post a commit transaction, the head can be aborted by going directly from initial to final.

2.2 The Coordinated Head protocol
The actual Head protocol starts after the initialization phase with an initial set of UTxOs that is
identical to the UTxOs locked on-chain via the commit and collectCom transactions.

The protocol processes off-chain transactions by distributing them between participants, while
each party maintains their view of the local UTxO state. That is, the current set of UTxOs evolved
from the initial UTxO set by applying transactions as they are received from the other parties.

To confirm transactions and allow for distribution of the resulting UTxO set without needing
the whole transaction history, snapshots are created by the protocol participants. The initial
snapshot 𝑈0 corresponds to the initial UTxO set, while snapshots thereafter 𝑈1, 𝑈2, … are created
with monotonically increasing snapshot numbers.

For this, the next snapshot leader (round-robin) requests his view of a new confirmed state
to be signed by all participants as a new snapshot. The leader does not need to send his local
state, but only indicate, by hashes, the set of transactions to be included in order to obtain the
to-be-snapshotted UTxO set.

The other participants sign the snapshot as soon as they have (also) seen the transactions that
are to be processed on top of its preceding snapshot: a party’s local state is always ahead of the
latest confirmed snapshot.

Signatures are broadcast and aggregated by each party. When all signature parts of the multi-
signature are received and verified, a snapshot is considered confirmed. As a consequence, a partic-
ipant can safely delete (if wished) all transactions that have been processed into it as the snapshot’s
multi-signature is now evidence that this state once existed during the head evolution.

3

2.2.1 Updating an open head

Besides processing “normal” transactions, participants can also request to withdraw some UTxO
they can spend from the Head and make it available on main chain via a decrement 5.8 transaction
— the overall process is also called “decommit”.

The inverse of locking more UTxO on the mainchain and making it available within the head
is called (incremental) “commit”. First, anyone may create a deposit of one or more UTxO using a
deposit 5.5 transaction. The head participants will observe this deposit and, once settled, request
off-chain agreement to include the deposited UTxO in the form of a snapshot. With that agreement,
an increment 5.7 transaction can be created and used to update the head state on the mainchain.
A deadline is associated with the deposit, which ensures that the UTxO is locked up long enough
to be safely consumed into the head without risk of double spending. Should a deposit have not
been picked up in time, a recover 5.6 transaction allows anyone to unlock the original UTxO.

2.3 Closing the head
The head protocol is designed to allow any head member at any point in time to produce, without
interaction, a certificate to close the head. This certificate is created from the latest confirmed,
multi-signed snapshot. Using this certificate, the head member may “force close” the head by
advancing the mainchain state machine to the closed state.

Once in closed, the state machine grants parties a contestation period, during which parties may
contest the closure by posting the certificate of a newer snapshot on-chain in a contest transaction.
Contesting leads back to the state closed and each party can contest at most once. After the
contestation period has elapsed, the state machine may proceed to the final state. The state
machine enforces that the outputs of the transaction leading to final correspond exactly to the
latest UTxO set seen during the contestation period.

2.4 Differences
In the Coordinated Head protocol, off-chain consensus is simplified by not having transactions
confirmed concurrently to the snapshots (and to each other) but having the snapshot leader propose,
in their snapshot, a set of transactions for explicit confirmation. The parties’ views of confirmed
transactions thus progress in sync with each other (once per confirmed snapshot), thus simplifying
the close/contest procedure on the mainchain. Also, there is no need for conflict resolution as in
Appendix B of [8]. In summary, the differences to the original Head protocol in [8] are:

• No hanging transactions due to ‘coordination’.

• No acknowledgement nor confirmation of transactions.

• No confirmation message for snapshots (two-round local confirmation).

• Allow for incremental commits and decommits while head is open.

4

3 Preliminaries
This section introduces notation and other preliminaries used in the remainder of the specification.

3.1 Notation
The specification uses set-notation based approach while also inspired by [1] and [6]. Values 𝑎 are
in a set 𝑎 ∈ 𝒜, also indicated as being of some type 𝑎 ∶ 𝒜, and multidimensional values are tuples
drawn from a × product of multiple sets, e.g. (𝑎, 𝑏) ∈ (𝒜 × ℬ). An empty set is indicated by ∅
and sets may be enumerated using {𝑎1 … 𝑎𝑛} notation. The = operator means equality and ← is
explicit assignment of a variable or value to one or more variables. Projection is used to access the
elements of a tuple, e.g. (𝑎, 𝑏)↓1 = 𝑎. Functions are morphisms mapping from one set to another
𝑥 ∶ 𝒜 → 𝑓(𝑥) ∶ ℬ, where function application of a function 𝑓 to an argument 𝑥 is written as 𝑓(𝑥).

Furthermore, given a set 𝒜, let

• 𝒜? = 𝒜 ∪ ♢ denotes an option: a value from 𝒜 or no value at all indicated by ⊥,

• 𝒜𝑛 be the set of all n-sized sequences over 𝒜,

• 𝒜! = ⋃𝑛∈ℕ
𝑖=1 𝒜𝑖 be the set of non-empty sequences over 𝒜, and

• 𝒜∗ = ⋃𝑛∈ℕ
𝑖=0 𝒜𝑖 be the set of all sequences over 𝒜.

With this, we further define:

• 𝔹 = {false, true} are boolean values

• ℕ are natural numbers {0, 1, 2, …}

• ℤ are integer numbers {… , −2, −1, 0, 1, 2, …}

• ℍ = ⋃inf
𝑛=0 {0, 1}8𝑛 denotes a arbitrary string of bytes

• concat ∶ ℍ∗ → ℍ is concatenating bytes, we also use operator ⨁ for this

• hash ∶ 𝑥 → ℍ denotes a collision-resistant hashing function and 𝑥# indicates the hash of 𝑥

• bytes ∶ 𝑥 → ℍ denotes an invertible serialisation function mapping arbitrary data to bytes

• 𝑎||𝑏 = concat(bytes(𝑎), bytes(𝑏)) is an operator which concatenates the bytes(𝑏) to the bytes(𝑎)

• Lists of values 𝑙 ∈ 𝒜∗ are written as 𝑙 = [𝑥1, … , 𝑥𝑛]. Empty lists are denoted by [], the 𝑖th
element 𝑥𝑖 is also written 𝑙[𝑖] and the length of the list is |𝑙| = 𝑛. An underscore is also
used to indicate a list of values 𝑥 = 𝑙. Projection on lists are mapped to their elements, i.e.
𝑥↓1 = [𝑥↓1

1 , … , 𝑥↓1
𝑛].

• sortOn ∶ 𝑖 → 𝒜∗ → 𝒜∗ does sort a list of values on the 𝑖th projection.

• Data is a universal data type of nested sums and products built up recursively from the base
types of ℤ and ℍ.

5

3.2 Public key multi-signature scheme
A multisignature scheme is a set of algorithms where

• MS-Setup generates public parameters Π, such that

• (𝑘𝑣𝑒𝑟, 𝑘𝑠𝑖𝑔) ← MS-KG(Π) can be used to generate fresh key pairs,

• 𝜎 ← MS-Sign(Π, 𝑘𝑠𝑖𝑔, 𝑚) signs a message 𝑚 using key 𝑘𝑠𝑖𝑔,

• �̃� ← MS-AVK(Π, 𝑘) aggregates a list of verification keys 𝑘 into a single, aggregate key �̃�,

• �̃� ← MS-ASig(Π, 𝑚, 𝑘, 𝜎) aggregates a list of signatures 𝜎 about message 𝑚 into a single,
aggregate signature �̃�.

• MS-Verify(Π, �̃�, 𝑚, �̃�) ∈ 𝔹 verifies an aggregate signature �̃� of message 𝑚 under an aggregate
verification key �̃�.

The security definition of a multisignature scheme from [9, 10] guarantees that, if �̃� is produced
from a tuple of verification keys 𝑘 via MS-AVK, then no aggregate signature �̃� can pass verification
MS-Verify(�̃�, 𝑚, �̃�) unless all honest parties holding keys in 𝑘 signed 𝑚.

Note that in the following, we make the parameter Π implicit and leave out the 𝑣𝑒𝑟 suffix for
verification key such that 𝑘 = 𝑘𝑣𝑒𝑟 for better readability.

3.3 Extended UTxO
The Hydra Head protocol is specified to work on the so-called Extended UTxO (EUTxO) ledgers
like Cardano.

The basis for EUTxO is Bitcoin’s UTxO ledger model [5, 11]. Intuitively, it arranges transactions
in a directed acyclic graph, such as the one in Figure 2, where boxes represent transactions with
(red) inputs to the left and (black) outputs to the right. A dangling (unconnected) output is an
unspent transaction output (UTxO) — there are two UTxOs in the figure.

Figure 2: Example of a plain UTxO graph

The following paragraphs will give definitions of the UTxO model and it’s extension to sup-
port scripting (EUTxO) suitable for this Hydra Head protocol specification. For a more detailed
introduction to the EUTxO ledger model, see [6], [1] and [7].

6

3.3.1 Values

Definition 1 (Values). Values are sets that keep track of how many units of which tokens of
which currency are available. Given a finitely supported function ↦, that maps keys to monoids,
a value is the set of such mappings over currencies (minting policy identifiers), over a mapping of
token names 𝑡 to quantities 𝑞:

val ∈ Val = (𝑐 ∶ ℍ ↦ (𝑡 ∶ ℍ ↦ 𝑞 ∶ ℤ))

where addition of values is defined as + and ∅ is the empty value.

For example, the value {𝑐1 ↦ {𝑡1 ↦ 1, 𝑡2 ↦ 1}} contains tokens 𝑡1 and 𝑡2 of currency 𝑐1 and
addition merges currencies and token names naturally:

{𝑐1 ↦ {𝑡1 ↦ 1, 𝑡2 ↦ 1}}
+ {𝑐1 ↦ {𝑡2 ↦ 1, 𝑡3 ↦ 1}, 𝑐2 ↦ {𝑡1 ↦ 2}}
= {𝑐1 ↦ {𝑡1 ↦ 1, 𝑡2 ↦ 2, 𝑡3 ↦ 1}, 𝑐2 ↦ {𝑡1 ↦ 2}} .

While the above definition should be sufficient for the purpose of this specification, a full
definition for finitely supported functions and values as used here can be found in [7]. To further
improve readability, we define the following shorthands:

• {𝑡1, … , 𝑡𝑛} ∶∶ 𝑐 for a set positive single quantity assets {𝑐 ↦ {𝑡1 ↦ 1, … , 𝑡𝑛 ↦ 1}},

• {𝑡1, … , 𝑡𝑛}−1 ∶∶ 𝑐 for a set of negative single quantity assets {𝑐 ↦ {𝑡1 ↦ −1, … , 𝑡𝑛 ↦ −1}},

• {𝑐 ↦ 𝑡 ↦ 𝑞} for the value entry {𝑐 ↦ {𝑡 ↦ 𝑞}},

• {𝑐 ↦ ⋅ ↦ 𝑞} for any asset with currency 𝑐 and quantity 𝑞 irrespective of token name.

3.3.2 Scripts

Validator scripts are called phase-2 scripts in the Cardano Ledger specification (see [3] for a formal
treatment of these). Scripts are used for multiple purposes, but most often (and sufficient for this
specification) as a spending or minting policy script.

Definition 2 (Minting Policy Script). A script 𝜇 ∈ ℳ governing whether a value can be
minted (or burned), is a pure function with type

𝜇 ∈ ℳ = (𝜌 ∶ Data) → (𝛾 ∶ Γ) → 𝔹,

where 𝜌 ∈ Data is the redeemer provided as part of the transaction being validated and 𝛾 ∈ Γ is the
validation context.

Definition 3 (Spending Validator Script). A validator script 𝜈 ∈ 𝒱 governing whether an
output can be spent, is a pure function with type

𝜈 ∈ 𝒱 = (𝛿 ∶ Data) → (𝜌 ∶ Data) → (𝛾 ∶ Γ) → 𝔹,

where 𝛿 ∈ Data is the datum available at the output to be spent, 𝜌 ∈ Data is the redeemer data
provided as part of the transaction being validated, and 𝛾 ∈ Γ is the validation context.

7

3.3.3 Transactions actual
transac-
tions 𝒯
are not
defined

We define EUTxO inputs, outputs and transactions as they are available to scripts and just
enough to specify the behavior of the Hydra validator scripts. For example outputs addresses and
datums are much more complicated in the full ledger model [1, 2].

Definition 4 (Outputs). An output 𝑜 ∈ 𝒪 stores some value val ∈ Val at some address, defined
by the hash of a validator script 𝜈# ∈ ℍ = hash(𝜈 ∈ 𝒱), and may store (reference) some data
𝛿 ∈ Data:

𝑜 ∈ 𝒪 = (val ∶ Val × 𝜈# ∶ ℍ × 𝛿 ∶ Data)

Definition 5 (Output references). An output reference 𝜙 ∈ Φ points to an output of a trans-
action, using a transaction id (that is, a hash of the transaction body) and the output index within
that transaction.

𝜙 ∈ Φ = (ℍ × ℕ)

Definition 6 (Inputs). A transaction input 𝑖 ∈ ℐ is an output reference 𝜙 ∈ Φ with a corre-
sponding redeemer 𝜌 ∈ Data:

𝑖 ∈ ℐ = (𝜙 ∶ Φ × 𝜌 ∶ Data)

Definition 7 (Validation Context). A validation context 𝛾 ∈ Γ is a view on the transaction
to be validated:

𝛾 ∈ Γ = (ℐ∗ × 𝒪∗ × Val × 𝒮↔ × 𝒦)
where ℐ ∈ ℐ∗ is a set of inputs, 𝒪 ∈ 𝒪∗ is a list of outputs, mint ∈ Val is the minted (or burned)
value, (𝑡min, 𝑡max) ∈ 𝒮↔ are the lower and upper validity bounds where 𝑡min <= 𝑡max, and 𝜅 ∈ 𝒦 is
the set of verification keys which signed the transaction.

Informally, scripts are evaluated by the ledger when it applies a transaction to its current state
to yield a new ledger state (besides checking the transaction integrity, signatures and ledger rules).
Each validator script referenced by an output is passed its arguments drawn from the output it
locks and the transaction context it is executed in. The transaction is valid if and only if all scripts
validate, i.e. 𝜇(𝜌, 𝛾) = true and 𝜈(𝛿, 𝜌, 𝛾) = true.

3.3.4 State machines and graphical notation

State machines in the EUTxO ledger model are commonly described using the constraint emitting
machine (CEM) formalism [6], e.g. the original paper describes the Hydra Head protocol using this
notation [8]. Although inspired by CEMs, this specification uses a more direct representation of in-
dividual transactions to simplify description of non-state-machine transactions and help translation
to concrete implementations on Cardano. The structure of the state machine is enforced on-chain
through scripts which run as part of the ledger’s validation of a transaction (see Section 3.3). For
each protocol transaction, the specification defines the structure of the transaction and enumerates
the transaction constraints enforced by the scripts (tx≡ in the CEM formalism). Add an

exam-
ple graph
with a
legend

8

4 Protocol Setup
In order to create a head-protocol instance, an initiator invites a set of participants (the initiator
being one of them) to join by announcing to them the protocol parameters.

• For on-chain transaction authentication (Cardano) purposes, each party p𝑖 generates a cor-
responding key pair (𝑘𝑣𝑒𝑟

𝑖 , 𝑘𝑠𝑖𝑔
𝑖) and sends their verification key 𝑘𝑣𝑒𝑟

𝑖 to all other parties. In
the case of Cardano, these are Ed25519 keys.

• For off-chain signing (Hydra) purposes, a very basic multisignature scheme (MS, as defined
in Section 3.2) based on EdDSA using Ed25519 keys is used:

– MS-KG is Ed25519 key generation (requires no parameters)
– MS-Sign creates an EdDSA signature
– MS-AVK is concatenation of verification keys into an ordered list
– MS-ASig is concatenation of signatures into an ordered list
– MS-Verify verifies the ”aggregate” signature by verifying each individual EdDSA signa-

ture under the corresponding Ed25519 verification key

To help distinguish on- and off-chain key sets, Cardano verification keys are written 𝑘C, while
Hydra verification keys are indicated as 𝑘H for the remainder of this document.

• Each party p𝑖 generates a hydra key pair and sends their hydra verification key to all other
parties.

• Each party p𝑖 computes the aggregate key from the received verification keys, stores the
aggregate key, their signing key as well as the number of participants 𝑛.

• Each party establishes pairwise communication channels to all other parties. That is, every
network message received from a specific party is checked for (channel) authentication. It
is the implementer’s duty to find a suitable authentication process for the communication
channels.

• All parties agree on a contestation period 𝑇 .

If any of the above fails (or the party does not agree to join the head in the first place), the
party aborts the initiation protocol and ignores any further action. Finally, at least one of the
participants posts the init transaction onchain as described next in Section 5.

9

5 On-chain Protocol
Update
figures

Open
problem:
ensure
abort is
always
possible.
e.g. by in-
dividual
aborts or
undoing
commits

Open
problem:
ensure
fanout is
always
possible,
e.g. by
limiting
complex-
ity of 𝑈0

The following sections describe the the on-chain protocol controlling the life-cycle of a Hydra head,
which can be intuitively described as a state machine (see Figure 1). Each transition in this state
machine is represented and caused by a corresponding Hydra protocol transaction on-chain: init 5.1,
commit 5.2, abort 5.3, collectCom 5.4, increment 5.7, decrement 5.8, close 5.9, contest 5.10, and
fanout 5.11.

Besides the main state transitions of the head protocol, there is the related “deposit protocol” with
two transactions in support of increment: deposit 5.5 and recover 5.6.

The head protocol defines one minting policy script and three validator scripts:

• 𝜇head governs minting of state and participation tokens in init and burning of these tokens in
abort and fanout.

• 𝜈initial controls how UTxOs are committed to the head in commit or when the head initialization
is aborted via abort.

• 𝜈commit controls the collection of committed UTxOs into the head in collectCom or that funds
are reimbursed in an abort.

• 𝜈head represents the main protocol state machine logic and ensures contract continuity through-
out collectCom, decrement, increment, close, contest and fanout.

The deposit protocol defines one validator script:

• 𝜈deposit controls that deposit transaction output is claimed correctly into a head via increment
or recovered after the deadline has passed in a recover transaction.

5.1 Init transaction
The init transaction creates a head instance and establishes the initial state of the protocol and is
shown in Figure 3. The head instance is represented by the unique currency identifier cid created
by minting tokens using the 𝜇head minting policy script which is parameterized by a single output
reference parameter 𝜙seed ∈ Φ:

cid = hash(𝜇head(𝜙seed))
Two kinds of tokens are minted:

• A single State Thread (ST) token marking the head output. This output contains the state
of the protocol on-chain and the token ensures contract continuity. The token name is the
well known string HydraHeadV1, i.e. ST = {cid ↦ HydraHeadV1 ↦ 1}.

• One Participation Token (PT) per participant 𝑖 ∈ {1 … |𝑘H|} to be used for authenticating
further transactions and to ensure every participant can commit and cannot be censored. The
token name is the participant’s verification key hash 𝑘#

𝑖 = hash(𝑘𝑣𝑒𝑟
𝑖) of the verification key

as received during protocol setup, i.e. PT𝑖 = {cid ↦ 𝑘#
𝑖 ↦ 1}.

Consequently, the init transaction

10

Figure 3: init transaction spending a seed UTxO, and producing the head output in state initial and initial
outputs for each participant.

• has at least input 𝜙seed,

• mints the state thread token ST, and one PT for each of the |𝑘H| participants with policy cid,

• has |𝑘H| initial outputs 𝑜initial𝑖 with datum 𝛿initial = cid,

• has one head output 𝑜head, which captures the initial state of the protocol in the datum

𝛿head = (initial, cid′, 𝜙′
seed, 𝑘H, 𝑇)

where

– initial is a state identifier,
– cid′ is the unique currency id of this instance,
– 𝜙′

seed is the output reference parameter of 𝜇head,
– 𝑘H are the off-chain multi-signature keys from the setup phase,
– 𝑇 is the contestation period.

The 𝜇head(𝜙seed) minting policy is the only script that verifies init transactions and can be redeemed
with either a Mint or Burn redeemer:

• When evaluated with the Mint redeemer,

1. The seed output is spent in this transaction. This guarantees uniqueness of the policy cid
because the EUTxO ledger ensures that 𝜙seed cannot be spent twice in the same chain.
(𝜙seed, ⋅) ∈ ℐ

2. All entries of mint are of this policy and of single quantity ∀{𝑐 ↦ ⋅ ↦ 𝑞} ∈ mint ∶ 𝑐 =
cid ∧ 𝑞 = 1

11

3. Right number of tokens are minted |mint| = |𝑘H| + 1
4. State token is sent to the head validator ST ∈ valhead

5. The correct number of initial outputs are present |(⋅, 𝜈initial, ⋅) ∈ 𝒪| = |𝑘H|
6. All participation tokens are sent to the initial validator as an initial output ∀𝑖 ∈

[1 … |𝑘H|] ∶ {cid ↦ ⋅ ↦ 1} ∈ valinitial𝑖

7. The 𝛿head contains own currency id cid = cid′ and the right seed reference 𝜙seed = 𝜙′
seed

8. All initial outputs have a cid as their datum: ∀𝑖 ∈ [1 … |𝑘H|] ∶ cid = 𝛿initial𝑖

• When evaluated with the Burn redeemer, move to
abort/fanout?

1. All tokens for this policy in mint need to be of negative quantity ∀{cid ↦ ⋅ ↦ 𝑞} ∈ mint ∶
𝑞 < 0.

Important: The 𝜇head minting policy only ensures uniqueness of cid, that the right amount of
tokens have been minted and sent to 𝜈head and 𝜈initial respectively, while these validators in turn
ensure continuity of the contract. However, it is crucial that all head members check that head
output always contains an ST token of policy cid which satisfies cid = hash(𝜇head(𝜙seed)). The 𝜙seed
from a head datum can be used to determine this. Also, head members should verify whether
the correct verification key hashes are used in the PTs and the initial state is consistent with pa-
rameters agreed during setup. See the initialTx behavior in Figure 14 for details about these checks.

5.2 Commit Transaction
A commit transaction may be submitted by each participant ∀𝑖 ∈ {1 … |𝑘H|} to commit some UTxO
into the head or acknowledge to not commit anything. The transaction is depicted in Figure 4 and
has the following structure:

• One input spending from 𝜈initial with datum 𝛿initial , where value valinitial𝑖 holds a PT𝑖, and the
redeemer 𝜌initial ∈ Φ∗ is a list of output references to be committed,

• zero or more inputs with reference 𝜙committed𝑗
spending output 𝑜committed𝑗

with valcommitted𝑗
,

• one output paying to 𝜈commit with value valcommit𝑖
and datum 𝛿commit .

The 𝜈initial validator with 𝛿initial = cid and 𝜌initial = 𝜙
committed

ensures that:

1. All committed value is in the output valcommit𝑖
⊇ valinitial𝑖 ∪ (⋃𝑚

𝑗=1 valcommitted𝑗
) 1

2. Currency id and committed outputs are recorded in the output datum 𝛿commit = (cid, 𝐶𝑖),
where 𝐶𝑖 = ∀𝑗 ∈ {1 … 𝑚} ∶ [(𝜙committed𝑗

, bytes(𝑜committed𝑗
))] is a list of all committed UTxO

recorded as tuples on-chain.

3. Transaction is signed by the right participant ∃{cid ↦ 𝑘#
𝑖 ↦ 1} ∈ valinitial ⇒ 𝑘#

𝑖 ∈ 𝜅
4. No minting or burning mint = ∅

The 𝜈commit validator ensures the output is collected by either a collectCom in Section 5.4 or abort
in Section 5.3 transaction of the on-chain state machine, selected by the appropriate redeemer. update

with mul-
tiple com-
mits

1The ⊇ is important for real world situations where the values might not be exactly equal due to ledger constraints

12

Figure 4: commit transaction spending an initial output and a single committed output, and producing a
commit output.

5.3 Abort Transaction
The abort transaction (see Figure 5) allows a party to abort the creation of a head and consists of

• one input spending from 𝜈head holding the ST with 𝛿head,

• ∀𝑖 ∈ {1 … |𝑘H|} inputs either

– spending from 𝜈initial with with PT𝑖 ∈ valinitial𝑖 and 𝛿initial𝑖 = cid, or
– spending from 𝜈commit with with PT𝑖 ∈ valcommit𝑖

and 𝛿commit𝑖
= (cid, 𝐶𝑖),

• outputs 𝑜1 … 𝑜𝑚 to redistribute already committed UTxOs.

Note that abort represents a final transition of the state machine and hence there is no state
machine output.
Each spent 𝜈initial validator with 𝛿initial𝑖 = cid and 𝜌initial𝑖 = abort ensures that:

1. The state token of currency cid is getting burned {ST ↦ −1} ⊆ mint.

Each spent 𝜈commit validator with 𝛿commit𝑖
= (cid, ⋅) and 𝜌commit𝑖

= abort ensures that:

1. The state token of currency cid is getting burned {ST ↦ −1} ⊆ mint.

The 𝜇head(𝜙seed) minting policy governs the burning of tokens via redeemer burn that:

1. All tokens in mint need to be of negative quantity ∀{cid ↦ ⋅ ↦ 𝑞} ∈ mint ∶ 𝑞 < 0.

The state-machine validator 𝜈head is spent with 𝜌head = (abort, 𝑚), where 𝑚 is the number of outputs
to reimburse, and checks:

1. State is advanced from 𝛿head ∼ initial to terminal state final:

(initial, cid, 𝜙seed, 𝑘H, 𝑇) abort−−−→
𝑚

final.

(i.e. to ensure a minimum value on outputs).

13

Figure 5: abort transaction spending the initial state head output and collecting all initial and commit
outputs, which get reimbursed by outputs 𝑜1 … 𝑜𝑚. Note that each PT may be in either, an initial or commit
output.

2. All UTxOs committed into the head are reimbursed exactly as they were committed. This is
done by comparing hashes of serialised representations of the 𝑚 reimbursing outputs 𝑜1 … 𝑜𝑚

2

with the canonically combined committed UTxOs in 𝐶𝑖:

hash(
𝑚

⨁
𝑗=1

bytes(𝑜𝑗)) = combine([𝐶𝑖 | ∀[1 … |𝑘H|], 𝐶𝑖 ≠ ⊥])

3. Transaction is signed by a participant ∃{cid ↦ 𝑘#
𝑖 ↦ −1} ∈ mint ⇒ 𝑘#

𝑖 ∈ 𝜅.

4. All tokens are burnt |{cid ↦ ⋅ ↦ −1} ∈ mint| = |𝑘H| + 1.

5.4 CollectCom Transaction
The collectCom transaction (Figure 6) collects all the committed UTxOs to the same head. It has

• one input spending from 𝜈head holding the ST with 𝛿head,

• ∀𝑖 ∈ {1 … |𝑘H|} inputs spending commit outputs (valcommit𝑖
, 𝜈commit, 𝛿commit𝑖

) with PT𝑖 ∈
valcommit𝑖

and 𝛿commit𝑖
= (cid, 𝐶𝑖), and

• one output paying to 𝜈head with value val′head and datum 𝛿′
head.

The state-machine validator 𝜈head is spent with 𝜌head = collect and checks:

1. State is advanced from 𝛿head ∼ initial to 𝛿′
head ∼ open, parameters cid, 𝑘H, 𝑇 stay unchanged

and the new state is governed again by 𝜈head

(initial, cid, 𝜙seed, 𝑘H, 𝑇) collect−−−→ (open, cid, 𝑘H, 𝑇 , 𝑣, 𝜂)
2Only the first 𝑚 outputs are used for reimbursing, while more outputs may be present in the transaction, e.g for

returning change.

14

where snapshot version is initialized as 𝑣 = 0.

2. Commits are collected in 𝜂
𝜂 = 𝑈# = combine([𝐶1, … , 𝐶𝑛])

where 𝑛 = |𝑘H| and

combine(𝐶) = hash(concat(sortOn(1, concat(𝐶))↓2))
That is, given a list of committed UTxO 𝐶, where each element is a list of output references
and the serialised representation of what was committed, combine first concatenates all com-
mits together, sorts this list by the output references, concatenates all bytes and hashes the
result3.

3. All committed value captured and no value is extracted

val′head = valhead ∪ (
𝑛

⋃
𝑖=1

valcommit𝑖
)

4. Every participant had the chance to commit, by checking all tokens are present in output4

|{cid → . → 1} ∈ val′head| = |𝑘H| + 1

5. Transaction is signed by a participant

∃{cid ↦ 𝑘#
𝑖 ↦ 1} ∈ valcommit𝑖

⇒ 𝑘#
𝑖 ∈ 𝜅

6. No minting or burning
mint = ∅

Each spent 𝜈commit validator with 𝛿commit𝑖
= (cid, ⋅) and 𝜌commit𝑖

= collect ensures that:
1. The state token of currency cid is present in the output value

ST ∈ val′head

5.5 Deposit Transaction
The deposit transaction initiates a (incremental) commit by locking funds in 𝜈deposit for later col-
lection by the head protocol. Any transaction paying to 𝜈deposit is a deposit transaction as there
is no on-chain verification in deposit transactions. Consequently, protocol actors must ensure
off-chain that a valid datum is used when paying to the 𝜈deposit validator. explain

why this
is enough?A valid deposit output is governed by 𝜈deposit with value valdeposit and datum

𝛿deposit = (cid, 𝑡recover, 𝐶)
where

3Sorting is required to ensure a canonical representation which can also be reproduced from the UTxO set later
in the fanout.

4This is sufficient as a Head participant would check off-chain whether a Head is initialized correctly with the
right number of tokens.

15

Figure 6: collectCom transaction spending the head output in initial state and collecting from multiple
commit outputs into a single open head output.

• cid is the currency id of the target head protocol instance (see 5.1),

• 𝑡recover is a deadline after which the deposit can be recovered, and

• 𝐶 ∈ (ℐ × ℍ)∗ is a list of transaction output references with along with serialized outputs that
should become available in the head (similar to commits in 5.2).

Head protocol participants determine off-chain whether a deposit output 𝑜desposit is eligible for
their head by checking

1. cid matches their head identifier,

2. 𝑡recover is reasonably far in the future, and explain;
relate to
contesta-
tion pe-
riod?

3. valdeposit contains the value of all decoded outputs of 𝐶 from 𝛿deposit.

An example transaction which records all its spent inputs in a deposit output is shown in Figure 7.
The 𝑗 ∈ {1 … 𝑚} inputs of this example with reference 𝜙deposited𝑗

each spend output 𝑜deposited𝑗
with

valdeposited𝑗
would be recorded in the output datum as

𝐶 = ∀𝑗 ∈ {1 … 𝑚} ∶ [(𝜙deposited𝑗
, bytes(𝑜deposited𝑗

))]

and the value check would need to satisfy

valdeposit ⊇
𝑚
⋃
𝑗=1

valdeposited𝑗

5.6 Recover Transaction
If a deposit transaction output (see 5.5) was not collected into a head by an increment transac-
tion 5.7, the recover transaction (Figure 8) allows for restoring the UTxO as recorded in the deposit
after the deadline has passed. It consists of

16

Figure 7: deposit transaction spending multiple UTxO into a deposit output.

Figure 8: recover transaction restoring UTxO of a deposit output.

• one input spending from 𝜈deposit with datum 𝛿deposit = (cid, 𝑡recover, 𝐶), and

• outputs 𝑜1 … 𝑜𝑚 to recover UTxOs.

The script validator 𝜈deposit is spent with redeemer 𝜌deposit = (Recover, 𝑚), where 𝑚 is the number
of outputs to recover, and checks:

1. All UTxOs are recovered exactly as they were deposited. This is done by comparing hashes of
serialised representations of the 𝑚 recovering outputs 𝑜1 … 𝑜𝑚 with the canonically combined
committed UTxOs in 𝐶:

hash(
𝑚

⨁
𝑗=1

bytes(𝑜𝑗)) = hash(concat(sortOn(1, 𝐶)↓2))

2. Transaction is posted after the deadline

𝑡min > 𝑡recover

17

5.7 Increment Transaction
The increment transaction (Figure 9) allows a participant to add a deposit output 5.5 to an already
open head using a snapshot that approves inclusion. Consequently this transaction consists of:

• one input spending from 𝜈head with value valhead holding the ST and datum 𝛿head,

• one input 𝜙deposit spending from 𝜈deposit with value valdeposit and datum 𝛿deposit = (ciddeposit, 𝑡recover, 𝐶),

• one output paying to 𝜈head with value val′head and datum 𝛿′
head.

The deposit validator 𝜈deposit is spent with 𝜌deposit = (claim, cid) and ensures:

1. Claiming head id matches the deposit datum

cid = ciddeposit

2. Transaction is posted before the deadline

𝑡max <= 𝑡recover

The state-machine validator 𝜈head is spent with 𝜌head = (increment, 𝜉, 𝑠, 𝜙increment), where 𝜉 is a
multi-signature of the increment snapshot which authorizes addition of deposited UTxO, 𝑠 is the
snapshot number and 𝜙deposit points to the claimed deposit. The validator checks:

1. State is advanced from 𝛿head ∼ open to 𝛿′
head ∼ open, parameters cid, �̃�H, 𝑛, 𝑇 stay unchanged

and the new state is governed again by 𝜈head:

(open, cid, �̃�H, 𝑛, 𝑇 , 𝑣, 𝜂) increment−−−−−−−→
𝜉,𝑠,𝜙increment

(open, cid, �̃�H, 𝑛, 𝑇 , 𝑣′, 𝜂′)

2. New version 𝑣′ is incremented correctly

𝑣′ = 𝑣 + 1

3. Claimed deposit is spent
𝜙increment = 𝜙deposit

4. 𝜉 is a valid multi-signature of the new head state 𝜂′

MS-Verify(𝑘H, (cid||𝑣||𝑠||𝜂′||𝜂𝛼||⊥), 𝜉) = true

where 𝜂𝛼 is the digest of all deposited UTxO in 𝐶 sorted by their output references

𝜂𝛼 = hash(concat(sortOn(1, 𝐶)↓2))

5. The value in the head output is increased accordingly Only
check
val′head >
valhead?

valhead ∪ valdeposit = val′head

6. Transaction is signed by a participant
Redundant
to snap-
shot sig?

∃{cid ↦ 𝑘#
𝑖 ↦ 1} ∈ val′head ⇒ 𝑘#

𝑖 ∈ 𝜅

18

Figure 9: increment transaction spending an open head output, producing a new head output which includes
the new UTxO.

5.8 Decrement Transaction
The decrement transaction (Figure 10) allows a party to remove a UTxO from an already open
head and consists of:

• one input spending from 𝜈head holding the ST with 𝛿head,

• one output paying to 𝜈head with value val′head and datum 𝛿′
head,

• one or more decommit outputs 𝑜2 … 𝑜𝑚+1 with values val2 … val𝑚+1.

The state-machine validator 𝜈head is spent with 𝜌head = (decrement, 𝜉, 𝑠, 𝑚), where 𝜉 is a multi-
signature of the decrement snapshot which authorizes removal of some UTxO, 𝑠 is the used snapshot
number and 𝑚 is the number of outputs to distribute. The validator checks:

1. State is advanced from 𝛿head ∼ open to 𝛿′
head ∼ open, parameters cid, 𝑘H, 𝑇 stay unchanged

and the new state is governed again by 𝜈head

(open, cid, 𝑘H, 𝑇 , 𝑣, 𝜂) decrement−−−−−→
𝜉,𝑠,𝑚

(open, cid, 𝑘H, 𝑇 , 𝑣′, 𝜂′)

2. New version 𝑣′ is incremented correctly

𝑣′ = 𝑣 + 1

3. 𝜉 is a valid multi-signature of the new snapshot state 𝜂′

MS-Verify(𝑘H, (cid||𝑣||𝑠||𝜂′||𝜂𝛼||𝜂𝜔), 𝜉) = true

where 𝜂𝜔 is the digest of all removed UTxO

𝜂𝜔 = hash(
𝑚+1
⨁
𝑗=2

bytes(𝑜𝑗))

19

Figure 10: decrement transaction spending an open head output, producing a new head output and multiple
decommitted outputs.

Figure 11: close transaction spending the open head output and producing a closed head output.

4. The value in the head output is decreased accordingly Only
check
val′head <
valhead?

val′head ∪ (
𝑚+1
⋃
𝑗=2

val𝑗) = valhead

5. Transaction is signed by a participant Redundant
to snap-
shot sig?∃{cid ↦ 𝑘#

𝑖 ↦ 1} ∈ val′head ⇒ 𝑘#
𝑖 ∈ 𝜅

5.9 Close Transaction
In order to close a head, a head member may post the close transaction (see Figure 11). This
transaction has

• one input spending from 𝜈head holding the ST with 𝛿head,

• one output paying to 𝜈head with value val′head and datum 𝛿′
head.

The state-machine validator 𝜈head is spent with 𝜌head = (close, CloseType), where CloseType is a hint
against which open state to close and checks:

20

1. State is advanced from 𝛿head ∼ open to 𝛿′
head ∼ closed, parameters cid, 𝑘H, 𝑇 stay unchanged

and the new state is governed again by 𝜈head

(open, cid, 𝑘H, 𝑇 , 𝑣, 𝜂) close−−−−−→
CloseType

(closed, cid, 𝑘H, 𝑇 , 𝑣′, 𝑠′, 𝜂′, 𝜂𝛼Δ′, 𝜂𝜔Δ′, 𝒞, 𝑡final)

2. Last known open state version is recorded in closed state

𝑣′ = 𝑣

3. Based on the redeemer CloseType = Initial ∪ (Any, 𝜉) ∪ (UnusedInc, 𝜉, 𝜂𝛼) ∪ (UnusedDec, 𝜉) ∪
(UsedInc, 𝜉) ∪ (UsedDec, 𝜉, 𝜂𝜔), where 𝜉 is a multi-signature of the closing snapshot and 𝜂𝛼
and 𝜂𝜔 are the digests of the UTxO to increment or decrement respectively, six cases are
distinguished:

(a) Initial: The initial snapshot is used to close the head and open state was not updated.
No signatures are available and it suffices to check

𝑣 = 0
𝑠′ = 0
𝜂′ = 𝜂

(b) Any: Closing snapshot refers to current state version 𝑣 and both UTxO to increment
and decrement must be empty in the closed state.

𝜂𝛼Δ′ = 𝜂𝛼 = ⊥
𝜂𝜔Δ′ = 𝜂𝜔 = ⊥

MS-Verify(𝑘H, (cid||𝑣||𝑠′||𝜂′||𝜂𝛼||𝜂𝜔), 𝜉) = true

(c) UnusedInc: Closing snapshot refers to current state version 𝑣 and any UTxO to increment
must not be recorded in the closed state.

𝜂𝛼 ≠ ⊥
𝜂𝛼Δ′ = ⊥

𝜂𝜔Δ′ = 𝜂𝜔 = ⊥
MS-Verify(𝑘H, (cid||𝑣||𝑠′||𝜂′||𝜂𝛼||𝜂𝜔), 𝜉) = true

where 𝜂𝛼 is provided by the redeemer 5.
(d) UnusedDec: Closing snapshot refers to current state version 𝑣 and any UTxO to decre-

ment need to be present in the closed state too.

𝜂𝛼Δ′ = 𝜂𝛼 = ⊥
𝜂𝜔Δ′ = 𝜂𝜔 ≠ ⊥

MS-Verify(𝑘H, (cid||𝑣||𝑠′||𝜂′||𝜂𝛼||𝜂𝜔), 𝜉) = true

this is
hard to
under-
stand

5𝜂𝛼 needs to be provided to verify the signature, but is otherwise not relevant for the closed state

21

(e) UsedInc: Closing snapshot refers the previous state 𝑣 − 1 and any UTxO to increment
must be recorded in the closed state.

𝜂𝛼Δ′ = 𝜂𝛼 ≠ ⊥

𝜂𝜔Δ′ = 𝜂𝜔 = ⊥
MS-Verify(𝑘H, (cid||𝑣 − 1||𝑠′||𝜂′||𝜂𝛼||𝜂𝜔), 𝜉) = true

(f) UsedDec: Closing snapshot refers the previous state 𝑣 − 1 and any UTxO to decrement
must not be recorded in the closed state.

𝜂𝛼Δ′ = 𝜂𝛼 = ⊥

𝜂𝜔 ≠ ⊥
𝜂𝜔Δ′ = ⊥

MS-Verify(𝑘H, (cid||𝑣 − 1||𝑠′||𝜂′||𝜂𝛼||𝜂𝜔), 𝜉) = true

where 𝜂𝜔 is provided by the redeemer6.

4. Initializes the set of contesters
𝒞 = ∅

This allows the closing party to also contest and is required for use cases where pre-signed,
valid in the future, close transactions are used to delegate head closing.

5. Correct contestation deadline is set

𝑡final = 𝑡max + 𝑇

6. Transaction validity range is bounded by

𝑡max − 𝑡min ≤ 𝑇

to ensure the contestation deadline 𝑡final is at most 2 ∗ 𝑇 in the future.

7. Value in the head is preserved
val′head = valhead

8. Transaction is signed by a participant

∃{cid ↦ 𝑘#
𝑖 ↦ 1} ∈ valcommit𝑖

⇒ 𝑘#
𝑖 ∈ 𝜅

9. No minting or burning
mint = ∅

22

Figure 12: contest transaction spending the closed head output and producing a different closed head output.

5.10 Contest Transaction
The contest transaction (see Figure 12) is posted by a party to prove the currently closed state is
not the latest one. This transaction has

• one input spending from 𝜈head holding the ST with 𝛿head,

• one output paying to 𝜈head with value val′head and datum 𝛿′
head.

The state-machine validator 𝜈head is spent with 𝜌head = (contest, ContestType), where ContestType
is a hint how to verify the snapshot and checks:

1. State is advanced from 𝛿head ∼ open to 𝛿′
head ∼ closed, parameters cid, 𝑘H, 𝑇 stay unchanged

and the new state is governed again by 𝜈head

(closed, cid, 𝑘H, 𝑇 , 𝑣, 𝑠, 𝜂, 𝜂𝛼Δ, 𝜂𝜔Δ, 𝒞, 𝑡final)
contest−−−−−−−→

ContestType
(closed, cid, 𝑘H, 𝑇 , 𝑣′, 𝑠′, 𝜂′, 𝜂𝛼Δ′, 𝜂𝜔Δ′, 𝒞′, 𝑡′

final)

2. Last known open state version stays recorded in closed state

𝑣′ = 𝑣

3. Contested snapshot number 𝑠′ is higher than the currently stored snapshot number 𝑠

𝑠′ > 𝑠

4. Based on the redeemer ContestType = (Current, 𝜉)(UnusedInc, 𝜉, 𝜂𝛼)∪(UnusedDec, 𝜉)∪(UsedInc, 𝜉)∪
(UsedDec, 𝜉, 𝜂𝜔), where 𝜉 is a multi-signature of the contesting snapshot and 𝜂𝛼 and 𝜂𝜔 are
the digests of the UTxO to increment or decrement respectively, five cases are distinguished:

(a) Current: Contesting snapshot refers to current state version 𝑣 and any UTxO to increment
or decrement must be ⊥ in the closed state.

𝜂𝛼Δ′ = 𝜂𝛼 = ⊥

𝜂𝜔Δ′ = 𝜂𝜔 = ⊥
MS-Verify(𝑘H, (cid||𝑣||𝑠′||𝜂′||𝜂𝛼||𝜂𝜔), 𝜉) = true

6𝜂𝜔 needs to be provided to verify the signature, but is otherwise not relevant for the closed state

23

(b) UnusedInc: Contesting snapshot refers to current state version 𝑣 and any UTxO to
increment must be ⊥ in the closed state.

𝜂𝛼 ≠ ⊥

𝜂𝛼Δ′ = ⊥
𝜂𝜔Δ′ = 𝜂𝜔 = ⊥

MS-Verify(𝑘H, (cid||𝑣||𝑠′||𝜂′||𝜂𝛼||𝜂𝜔), 𝜉) = true

where 𝜂𝛼 is provided by the redeemer 7.
(c) UnusedDec: Contesting snapshot refers to current state version 𝑣 and any UTxO to

decrement need to be present in the closed state too.

𝜂𝛼Δ′ = 𝜂𝛼 = ⊥

𝜂𝜔Δ′ = 𝜂𝜔 ≠ ⊥
MS-Verify(𝑘H, (cid||𝑣||𝑠′||𝜂′||𝜂𝛼||𝜂𝜔), 𝜉) = true

(d) UsedInc: Contesting snapshot refers the previous state 𝑣−1 and any UTxO to increment
must be recorded in the closed state.

𝜂𝛼Δ′ = 𝜂𝛼 ≠ ⊥

𝜂𝜔Δ′ = 𝜂𝜔 = ⊥
MS-Verify(𝑘H, (cid||𝑣 − 1||𝑠′||𝜂′||𝜂𝛼||𝜂𝜔), 𝜉) = true

(e) UsedDec: Contesting snapshot refers the previous state 𝑣−1 and any UTxO to decrement
must not be recorded in the closed state.

𝜂𝛼Δ′ = 𝜂𝛼 = ⊥

𝜂𝜔 ≠ ⊥
𝜂𝜔Δ′ = ⊥

MS-Verify(𝑘H, (cid||𝑣 − 1||𝑠′||𝜂′||𝜂𝛼||𝜂𝜔), 𝜉) = true

where 𝜂𝜔 is provided by the redeemer8.

5. The single signer {𝑘#} = 𝜅 has not already contested and is added to the set of contesters

𝑘# ∉ 𝒞

𝒞′ = 𝒞 ∪ 𝑘#

6. Transaction is posted before deadline

𝑡max ≤ 𝑡final
7𝜂𝛼 needs to be provided to verify the signature, but is otherwise not relevant for the closed state
8𝜂𝜔 needs to be provided to verify the signature, but is otherwise not relevant for the closed state

24

Figure 13: fanout transaction spending the closed head output and distributing funds with outputs
𝑜1 … 𝑜𝑚+𝑛+𝑛′ .

7. Contestation deadline is updated correctly to

𝑡′
final = { 𝑡final if |𝒞′| = 𝑛,

𝑡final + 𝑇 otherwise.

8. Value in the head is preserved
val′head = valhead

9. Transaction is signed by a participant

∃{cid ↦ 𝑘#
𝑖 ↦ 1} ∈ valcommit𝑖

⇒ 𝑘#
𝑖 ∈ 𝜅

10. No minting or burning
mint = ∅

5.11 Fan-Out Transaction
Once the contestation phase is over, a head may be finalized by posting a fanout transaction (see
Figure 13), which distributes UTxOs from the head according to the latest state. It consists of

• one input spending from 𝜈head holding the ST, and

• outputs 𝑜1 … 𝑜𝑚+𝑛+𝑛′ to distribute UTxOs.

Note that fanout represents a final transition of the state machine and hence there is no state
machine output.
The state-machine validator 𝜈head is spent with 𝜌head = (fanout, 𝑚, 𝑛, 𝑛′), where 𝑚, 𝑛 and 𝑛′ are
outputs to distribute from the closed state, and checks:

1. State is advanced from 𝛿head ∼ closed to terminal state final:

(closed, cid, 𝑘H, 𝑇 , 𝑣, 𝑠, 𝜂, 𝜂𝛼Δ, 𝜂𝜔Δ, 𝒞, 𝑡final)
fanout−−−−→

𝑚,𝑛,𝑛′
final

25

2. The first 𝑚 outputs are distributing funds according to 𝜂. That is, the outputs exactly
correspond to the UTxO canonically combined 𝑈# (see Section 5.4):

𝜂 = 𝑈# = hash(
𝑚

⨁
𝑗=1

bytes(𝑜𝑗))

3. The following 𝑛 outputs are distributing funds according to 𝜂𝛼Δ. That is, the outputs exactly
correspond to the UTxO canonically combined 𝑈#

𝛼Δ (see Section 5.4):

𝜂𝛼Δ = 𝑈#
𝛼Δ = hash(

𝑚+𝑛
⨁
𝑗=𝑚

bytes(𝑜𝑗))

4. The next 𝑛′ outputs are distributing funds according to 𝜂𝜔Δ. That is, the outputs exactly
correspond to the UTxO canonically combined 𝑈#

𝜔Δ (see Section 5.4):

𝜂𝜔Δ = 𝑈#
𝜔Δ = hash(

𝑚+𝑛′

⨁
𝑗=𝑚′

bytes(𝑜𝑗))

5. Transaction is posted after contestation deadline 𝑡min > 𝑡final.

6. All tokens are burnt |{cid ↦ ⋅ ↦ −1} ∈ mint| = 𝑛 + 1.

The 𝜇head(𝜙seed) minting policy governs the burning of tokens via redeemer burn that:

1. All tokens in mint need to be of negative quantity ∀{cid ↦ ⋅ ↦ 𝑞} ∈ mint ∶ 𝑞 < 0.

6 Off-Chain Protocol
This section describes the actual Coordinated Hydra Head protocol, an even more simplified version
of the original publication [8]. See the protocol overview in Section 2 for an introduction and notable
changes to the original protocol. While the on-chain part already describes the full life-cycle of
a Hydra head on-chain, this section completes the picture by defining how the protocol behaves
off-chain and notably the relationship between on- and off-chain semantics. Participants of the
protocol are also called Hydra head members, parties or simply protocol actors. The protocol is
specified as a reactive system that processes three kinds of inputs:

1. On-chain protocol transactions as introduced in Section 5, which are posted to the mainchain
and can be observed by all actors:

• initialTx: initiates a head
• commitTx: commits UTxO to an initializing head
• collectComTx: opens a head
• depositTx: prepares UTxO to be incremented
• incrementTx: adds UTxO to an open head
• decrementTx: removes UTxO from an open head

26

• closeTx: closes a head
• contestTx: contests a closed head

2. Off-chain network messages sent between protocol actors (parties):

• reqTx: to request a transaction to be included in the next snapshot
• reqDec: to request exclusion of UTxO via a decommit transaction
• reqSn: to request a snapshot to be created & signed by every head member
• ackSn: to acknowledge a snapshot by replying with their signatures

3. Commands issued by the participants themselves or on behalf of end-users and clients

• init: to start initialization of a head
• close: to request closure of an open head

The behavior is fully specified in Figure 14, while the following paragraphs introduce notation,
explain variables and walk-through the protocol flow.

6.1 Assumptions
On top of the statements of the protocol setup in Section 4, the off-chain protocol logic relies on
these assumptions: move/merge

with pro-
tocol
setup?

• Every network message received from a specific party is checked for authentication. An
implementation of the specification needs to find a suitable means of authentication, either
on the communication channel or for individual messages. Unauthenticated messages must
be dropped.

• The head protocol gets correctly (and with completeness) notified about observed transactions
on-chain belonging to the respective head instance. Observation may be delayed varying by
type of transaction. See 6.5 for a discussion on eventual consistency of transactions.

• All inputs are processed to completion, i.e. run-to-completion semantics and no preemption.

• Inputs are deduplicated. That is, any two identical inputs must not lead to multiple invoca-
tions of the handling semantics.

• Given the specification, inputs may pile up forever and implementations need to consider these
situations (i.e. potential for DoS). A valid reaction to this would be to just drop these inputs.
Note that, from a security standpoint, these situations are identical to a non-collaborative
peer and closing the head is also a possible reaction.

• The lifecycle of a Hydra head on-chain does not cross (hard fork) protocol update boundaries.
Note that these inputs are announced in advance hence it should be possible for implementa-
tions to react in such a way as to expedite closing of the head before such a protocol update.
This further assumes that the contestation period parameter is picked accordingly.

27

6.2 Notation missing:,
apply tx• on 𝑒𝑣𝑒𝑛𝑡 specifies how the protocol reacts on a given input 𝑒𝑣𝑒𝑛𝑡. Further information may

be available from the constituents of 𝑒𝑣𝑒𝑛𝑡 and origin of the input.

• require 𝑝 means that boolean expression 𝑝 ∈ 𝔹 must be satisfied for the further execution of
a routine, while discontinued on ¬𝑝. A conservative protocol actor could interpret this as a
reason to close the head.

• wait 𝑝 is a non-blocking wait for boolean predicate 𝑝 ∈ 𝔹 to be satisfied. On ¬𝑝, the execution
of the routine is stopped, queued, and reactivated at latest when 𝑝 is satisfied.

• multicast 𝑚𝑠𝑔 means that a message 𝑚𝑠𝑔 is (channel-) authenticated and sent to all partic-
ipants of this head, including the sender.

• postTx 𝑡𝑥 has a party create transaction 𝑡𝑥, potentially from some data, and submit it
on-chain. See Section 5 for individual transaction details.

• output 𝑒𝑣𝑒𝑛𝑡 signals an observation of 𝑒𝑣𝑒𝑛𝑡, which is used in the security definition and
proofs of Section 7. This keyword can be ignored when implementing the protocol.

6.3 Variables
Besides parameters agreed in the protocol setup (see Section 4), a party’s local state consists of the
following variables:

• ̂𝑣: Last seen open state version.

• ̂𝑠: Sequence number of latest seen snapshot.

• Σ̂ ∈ (ℕ × ℍ)∗: Accumulator of signatures of the latest seen snapshot, indexed by parties.

• ̂ℒ: UTxO set representing the local ledger state resulting from applying �̂� to ̄𝑆.𝑈 to validate
requested transactions.

• �̂� ∈ 𝒯∗: List of transactions applied locally and pending inclusion in a snapshot (if this party
is the next leader).

• 𝑈𝛼 ∈ (ℐ × 𝒪)∗: UTxO set pending to be added to the head.

• tx𝜔 ∈ 𝒯: Pending decrement transaction, whose outputs are to be withdrawn from the head.

• ̄𝒮: Snapshot object of the latest confirmed snapshot which contains:
̄𝒮.𝑣 snapshot version
̄𝒮.𝑠 snapshot number
̄𝒮.𝒯 list of transactions relating this snapshot to the previous
̄𝒮.𝑈 snapshotted UTxO set
̄𝒮.𝑈𝛼 pending UTxO to increment
̄𝒮.𝑈𝜔 pending UTxO to decrement
̄𝒮.𝜎 multisignature

where constructor snObj(𝑣, 𝑛, 𝒯, 𝑈, 𝑈𝛼, 𝑈𝜔) initializes a new snapshot object with ̄𝒮.𝜎 = ∅.

28

6.4 Protocol flow
6.4.1 Initializing the head

init. Before a head can be initialized, all parties need to exchange and agree on protocol param-
eters during the protocol setup phase (see Section 4), so we can assume the public Cardano keys
𝑘𝑠𝑒𝑡𝑢𝑝

C , Hydra keys �̃�𝑠𝑒𝑡𝑢𝑝
H , as well as the contestation period 𝑇 𝑠𝑒𝑡𝑢𝑝 are available. One of the clients

then can start head initialization using the init command, which will result in an init transaction
being posted.

initialTx. All parties will receive this init transaction and validate announced parameters against
the pre-agreed 𝑠𝑒𝑡𝑢𝑝 parameters, as well as the structure of the transaction and the minting policy
used. This is a vital step to ensure the initialized Head is valid, which cannot be checked completely
on-chain (see also Section 5.1).

commitTx. As each party 𝑝𝑗 posts a commit transaction, the protocol records observed committed
UTxOs of each party 𝐶𝑗. With all committed UTxOs known, the 𝜂-state is created (as defined
in Section 5.4) and the collectCom transaction is posted. Note that while each participant may
post this transaction, only one of them will be included in the blockchain as the mainchain ledger
prevents double spending. Should any party want to abort, they would post an abort transaction
and the protocol would end at this point.

collectComTx. Upon observing the collectCom transaction, the parties compute 𝑈0 ← ⋃𝑛
𝑗=1 𝐶𝑗

using previously observed 𝐶𝑗 and initialize ̂ℒ = 𝑈0. The seen transaction set is initialized empty
�̂� = ∅, seen head state version ̂𝑣 = 0, as well as snapshot number ̂𝑠 = 0. No UTxO to increment
𝑈𝛼 = ∅ and no decrement transaction tx𝜔 = ⊥ is pending, and the last confirmed snapshot is
initialized accordingly ̄𝒮 ← snObj(0, 0, [], 𝑈0, ∅, ∅).

6.4.2 Processing transactions off-chain

Transactions are announced and captured in so-called snapshots. Parties generate snapshots in a
strictly sequential round-robin manner. The party responsible for issuing the 𝑖th snapshot is the
leader of the 𝑖th snapshot. Leader selection is round-robin per the 𝑘H from the protocol setup.
While the frequency of snapshots in the general Head protocol [8] was configurable, the Coordi-
nated Head protocol does specify a snapshot to be created after each transaction.

reqTx. Upon receiving request (reqTx, tx), the transaction is applied to the local ledger state
̂ℒ ∘ tx. If not applicable yet, the protocol does wait to retry later or eventually marks this trans-

action as invalid (see assumption about events piling up). After applying and if there is no current
snapshot in flight (̂𝑠 = ̄𝒮.𝑠) and the receiving party p𝑖 is the next snapshot leader, a message to
request snapshot signatures reqSn is sent.

reqDec. Upon receiving request (reqDec, tx𝜔), the transaction is checked against the local ledger
state and if it is not applicable yet or another commit or decommit is pending still, the protocol
does wait to retry later or eventually marks the decommit as invalid. After applying tx, its outputs

29

are removed from local ledger state ̂ℒ so that they are not available any more and the decommit
transaction is kept in the local state (tx𝜔). If there is no current snapshot in flight (̂𝑠 = ̄𝒮.𝑠) and
the receiving party p𝑖 is the next snapshot leader, a message to request snapshot signatures reqSn
containing the decrement transaction tx𝜔 is sent.

depositTx. Upon observing a deposit transaction as settled9 and no other commit or decommit
is pending still, each party keeps track of the observed deposited UTxO as the pending increment
UTxO set 𝑈𝛼 = 𝑈 . If other commits or decommits are pending, the protocol waits and retries
updating state later. If the observing party is the next snapshot leader, it may request a new smelly

and frag-
ile

snapshot by sending a reqSn including the UTxO to increment 𝑈𝛼.

reqSn. Upon receiving request (reqSn, 𝑣, 𝑠, txreq, 𝑈𝛼, tx𝜔)10 from party p𝑗, the receiving p𝑖 requires
that only a commit or decommit is currently pending, and that 𝑣 refers to the current open state
version, 𝑠 is the next snapshot number and that party p𝑗 is responsible for leading its creation. Party define

leaderp𝑖 may has to wait until the previous snapshot is confirmed (̄𝒮.𝑠 = ̂𝑠). If the decommit transaction
tx𝜔 is not ⊥, the transaction is required to be applicable to the last confirmed UTxO set ̄𝒮.𝑈 and
decommitted transaction outputs must be removed, yielding the still active UTxO set 𝑈active. Then,
all requested transactions txreq are required to be applicable to 𝑈active, otherwise the snapshot is
rejected as invalid. Only then, p𝑖 increments their seen-snapshot counter ̂𝑠, resets the signature
accumulator Σ̂, and computes the UTxO set of the new local snapshot as 𝑈 ← 𝑈active ∘ txreq. Then,
p𝑖 creates a signature 𝜎𝑖 using their signing key 𝑘𝑠𝑖𝑔

H on a message comprised by the cid, the new
snapshot number ̂𝑠, the new 𝜂 resulting from canonically combining 𝑈 (see Section 5.9 for details),
and either 𝜂𝛼 or 𝜂𝜔 derived from commit UTxO 𝑈𝛼 or decommit transaction tx𝜔 respectively. The
signature is sent to all head members via message (ackSn, ̂𝑠, 𝜎𝑖). Finally, the local ledger state ̂ℒ
and pending transaction set �̂� get pruned by re-applying all locally pending transactions �̂� to the
just requested snapshot’s UTxO set iteratively and ultimately yielding a “pruned” version of �̂� and

̂ℒ.

ackSn. Upon receiving acknowledgment (ackSn, 𝑠, 𝜎𝑗), all participants require that it is from an
expected snapshot (either the last seen ̂𝑠 or + 1), potentially wait for the corresponding reqSn
such that ̂𝑠 = 𝑠 and require that the signature is not yet included in Σ̂. They store the received
signature in the signature accumulator Σ̂, and if the signature from each party has been collected,
p𝑖 aggregates the multisignature �̃� and require it to be valid (constructing the signed message as
in reqSn). If everything is fine, the snapshot can be considered confirmed by creating the snapshot
object ̄𝒮 ← snObj(̂𝑣, ̂𝑠, �̂�, �̂�, 𝑈𝛼, outputs(tx𝜔)) and storing the multi-signature �̃� in it for later refer-
ence. In case there is a pending decommit, any participant can now submit a decrement transaction
by providing the just confirmed snapshot with its digests of the active UTxO set 𝜂 and the to be
removed UTxO set 𝜂𝜔. If, however, there was a pending commit, any participant can now submit
an incrementTx by providing the confirmed snapshot with its digests of the active UTxO set 𝜂
and the UTxO set to be added 𝜂𝛼. Lastly, if p𝑖 is the next snapshot leader and there are already
transactions to snapshot in �̂�, a corresponding reqSn is distributed.

9Protocol actors might use different techniques and delays to determine transaction finality. See also 6.5.
10Snapshot requests with only transaction identifiers and output references are possible if all parties keep an index

of previously seen transactions and their identifiers.

30

decrementTx. Upon observing the decrement transaction, which removed outputs 𝑈 from the
head, the corresponding pending decrement transaction is cleared and the observed version 𝑣 is
used for future snapshots by setting ̂𝑣 ← 𝑣. Note that the version of the open head state is incre-
mented on each decrement transaction as described in Section 5.8.

incrementTx. Upon observing the increment transaction, which added outputs 𝑈 to the head,
the local ledger state ̂ℒ is extended with the newly addded UTxO while the pending increment
state 𝑈𝛼 is cleared. Also the observed version 𝑣 is used for future snapshots by setting ̂𝑣 = 𝑣. Note
that the version of the open head state is incremented on each increment transaction as described
in Section 5.7

6.4.3 Closing the head

close. In order to close a head, a client issues the close input which uses the latest confirmed
snapshot ̄𝒮 to create the new 𝜂-state from the last confirmed UTxO set, the digest of either increment
or decrement UTxO set (𝜂𝛼 or 𝜂𝜔), and the certifiate 𝜉 using the corresponding multi-signature.
With these, the close transaction can be constructed and posted. See Section 5.9 for details about
this transaction.

closeTx/contestTx. When a party observes the head getting closed or contested, the 𝜂-state
extracted from the close or contest transaction represents the latest head status that has been
aggregated on-chain so far (by a sequence of close and contest transactions). If the last confirmed
(off-chain) snapshot is newer than the observed (on-chain) snapshot number 𝑠𝑐, an updated 𝜂-state,
along with the digest of either increment or decrement UTxO set (𝜂𝛼 or 𝜂𝜔), and certificate 𝜉 is
constructed and posted in a contest transaction (see Section 5.10).

6.5 Rollbacks and protocol changes Explain
varying
finality of
deposit
vs. incre-
ment

Explain
why
rollbacks
are no
problem
to incre-
ment/decrement

Write
about
contes-
tation
deadline
vs. roll-
backs

The overall life-cycle of the Head protocol is driven by on-chain inputs (see introduction of
Section 6) which stem from observing transactions on the mainchain. Most blockchains, however,
do only provide eventual consistency. The consensus algorithm ensures a consistent view of the
history of blocks and transactions between all parties, but this so-called finality is only achieved
after some time and the local view of the blockchain history may change until that point.

On Cardano with it’s Ouroboros consensus algorithm, this means that any local view of the
mainchain may not be the longest chain and a node may switch to a longer chain, onto another fork.
This other version of the history may not include what was previously observed and hence, any
tracking state needs to be updated to this “new reality”. Practically, this means that an observer
of the blockchain sees a rollback followed by rollforwards.

For the Head protocol, this means that chain events like closeTx may be observed a second
time. Hence, it is crucial, that the local state of the Hydra protocol is kept in sync and also
rolled back accordingly to be able to observe and react to these events the right way, e.g. correctly
contesting this closeTx if need be.

The rollback handling can be specified fully orthogonal on top of the nominal protocol behavior,
if the chain provides strictly monotonically increasing points 𝑝 on each chain event via a new or
wrapped rollforward event and rollback event with the point to which a rollback happened:

31

rollforward. On every chain event that is paired or wrapped in a rollforward event (rollback, 𝑝)
with point 𝑝, protocol participants store their head state indexed by this point in a history Ω of
states Δ ← (̂𝑣, ̂𝑠, �̂�, Σ̂, ̂ℒ, �̂�, ̄𝒮) and Ω′ = (𝑝, Δ) ∪ Ω.

rollback. On a rollback (rollback, 𝑝𝑟𝑏) to point 𝑝𝑟𝑏, the corresponding head state Δ need to be
retrieved from Ω, with the maximal point 𝑝 ≤ 𝑝𝑟𝑏, and all entries in Ω with 𝑝 > 𝑝𝑟𝑏 get removed.

This will essentially reset the local head state to the right point and allow the protocol to
progress through the life-cycle normally. Most stages of the life-cycle are unproblematic if they are
rolled back, as long as the protocol logic behaves as in the nominal case.

A rollback “past open” is a special situation though. When a Head is open and snapshots have
been signed, but then a collectCom and one or more commit transactions were rolled back, a bad
actor could choose to commit a different UTxO and open the Head with a different initial UTxO
set, while the already signed snapshots would still be (cryptographically) valid. To mitigate this,
all signatures on snapshots need to incorporate the initial UTxO set by including 𝜂0. version-

counting
is less
power-
full

32

Coordinated Hydra Head

on (init) from client
𝑛 ← |𝑘𝑠𝑒𝑡𝑢𝑝

H |
�̃�H ← MS-AVK(𝑘𝑠𝑒𝑡𝑢𝑝

H)
𝑘C ← 𝑘𝑠𝑒𝑡𝑢𝑝

C
𝑇 ← 𝑇 𝑠𝑒𝑡𝑢𝑝

postTx (init, 𝑛, �̃�H, 𝑘C, 𝑇)

on (initialTx, cid, 𝜙seed, 𝑛, �̃�H, 𝑘#
C , 𝑇) from chain

require �̃�H = MS-AVK(𝑘𝑠𝑒𝑡𝑢𝑝
H)

require 𝑘#
C = [hash(𝑘) | ∀𝑘 ∈ 𝑘𝑠𝑒𝑡𝑢𝑝

C]
require 𝑇 = 𝑇 𝑠𝑒𝑡𝑢𝑝

require cid = hash(𝜇head(𝜙seed))

on (commitTx, 𝑗, 𝑈) from chain
𝐶𝑗 ← 𝑈
if ∀𝑘 ∈ [1..𝑛] ∶ 𝐶𝑘 ≠ ⊥

𝜂 ← combine([𝐶1 … 𝐶𝑛])
postTx (collectCom, 𝜂)

on (collectComTx, 𝜂0) from chain
𝑈0 ← ⋃𝑛

𝑗=1 𝑈𝑗
̂ℒ ← 𝑈0
̄𝒮 ← snObj(0, 0, [], 𝑈0, ∅, ∅)
̂𝑣, ̂𝑠 ← 0

�̂� ← ∅
tx𝜔 ← ⊥
𝑈𝛼 ← ∅

on (reqTx, tx) from p𝑗
wait ̂ℒ ∘ tx ≠ ⊥

̂ℒ ← ̂ℒ ∘ tx
�̂� ← �̂� ∪ {tx}
if ̂𝑠 = ̄𝒮.𝑠 ∧ leader(̄𝒮.𝑠 + 1) = 𝑖

multicast (reqSn, ̂𝑣, ̄𝒮.𝑠 + 1, �̂�, 𝑈𝛼, tx𝜔)

on (reqDec, tx) from p𝑗
wait 𝑈𝛼 = ∅ ∧ tx𝜔 = ⊥ ∧ ̂ℒ ∘ tx ≠ ⊥

̂ℒ ← ̂ℒ ∘ tx ∖ outputs(tx)
tx𝜔 ← tx
if ̂𝑠 = ̄𝒮.𝑠 ∧ leader(̄𝒮.𝑠 + 1) = 𝑖

multicast (reqSn, ̂𝑣, ̄𝒮.𝑠 + 1, �̂�, 𝑈𝛼, tx𝜔)

on (depositTx, 𝑈) from chain
wait tx𝜔 = ⊥ ∧ 𝑈𝛼 = ∅

𝑈𝛼 = 𝑈
if ̂𝑠 = ̄𝒮.𝑠 ∧ leader(̄𝒮.𝑠 + 1) = 𝑖

multicast (reqSn, ̂𝑣, ̄𝒮.𝑠 + 1, �̂�, 𝑈𝛼, tx𝜔)

on (reqSn, 𝑣, 𝑠, txreq, 𝑈𝛼, tx𝜔) from p𝑗
require tx𝜔 = ⊥ ∨ 𝑈𝛼 = ∅
require 𝑣 = ̂𝑣 ∧ 𝑠 = ̂𝑠 + 1 ∧ leader(𝑠) = 𝑗
wait ̂𝑠 = ̄𝒮.𝑠

require ̄𝒮.𝑈 ∘ tx𝜔 ≠ ⊥
𝑈active ← ̄𝒮.𝑈 ∘ tx𝜔 ∖ outputs(tx𝜔)
require 𝑈active ∘ txreq ≠ ⊥
𝑈 ← 𝑈active ∘ txreq

̂𝑠 ← 𝑠
𝜂 ← combine(𝑈)
𝜂𝛼 ← combine(𝑈𝛼)
𝜂𝜔 ← combine(outputs(tx𝜔))
𝜎𝑖 ← MS-Sign(𝑘𝑠𝑖𝑔

H , (cid||𝑣|| ̂𝑠||𝜂||𝜂𝛼||𝜂𝜔))
Σ̂ ← ∅
multicast (ackSn, ̂𝑠, 𝜎𝑖)
∀tx ∈ txreq ∶ output (seen, tx)

̂ℒ ← 𝑈
𝑋 ← �̂�
�̂� ← ∅
for tx ∈ 𝑋 ∶ ̂ℒ ∘ tx ≠ ⊥

�̂� ← �̂� ∪ {tx}
̂ℒ ← ̂ℒ ∘ tx

on (ackSn, 𝑠, 𝜎𝑗) from p𝑗
require 𝑠 ∈ { ̂𝑠, ̂𝑠 + 1}
wait ̂𝑠 = 𝑠

require (𝑗, ⋅) ∉ Σ̂
Σ̂[𝑗] ← 𝜎𝑗
if ∀𝑘 ∈ [1..𝑛] ∶ (𝑘, ⋅) ∈ Σ̂

�̃� ← MS-ASig(𝑘𝑠𝑒𝑡𝑢𝑝
H , Σ̂)

𝜂 ← combine(�̂�)
𝜂𝛼 ← combine(𝑈𝛼)
𝑈𝜔 ← outputs(tx𝜔)
𝜂𝜔 ← combine(𝑈𝜔)
require MS-Verify(�̃�H, (cid|| ̂𝑣|| ̂𝑠||𝜂||𝜂𝛼||𝜂𝜔), �̃�)

̄𝒮 ← snObj(̂𝑣, ̂𝑠, �̂�, �̂�, 𝑈𝛼, 𝑈𝜔)
̄𝒮.𝜎 ← �̃�

∀tx ∈ 𝒯req ∶ output(conf, tx)
if ̄𝑆.𝑈𝜔 ≠ ⊥

postTx (decrementTx, ̂𝑣, ̂𝑠, 𝜂, 𝜂𝛼, 𝜂𝜔)
if ̄𝑆.𝑈𝛼 ≠ ⊥

postTx (incrementTx, ̂𝑣, ̂𝑠, 𝜂, 𝜂𝛼, 𝜂𝜔)
if leader(𝑠 + 1) = 𝑖 ∧ �̂� ≠ ∅

multicast (reqSn, ̂𝑣, ̄𝒮.𝑠 + 1, �̂�, 𝑈𝛼, tx𝜔)

on (decrementTx, 𝑈, 𝑣) from chain
tx𝜔 ← ⊥
̂𝑣 ← 𝑣

on (incrementTx, 𝑈, 𝑣) from chain
̂ℒ ← ̂ℒ ∪ 𝑈

𝑈𝛼 ← ∅
̂𝑣 ← 𝑣

33

on (close) from client
𝜂 ← combine(̄𝒮.𝑈)
𝜂𝛼 ← combine(̄𝒮.𝑈𝛼)
𝜂𝜔 ← combine(̄𝒮.𝑈𝜔)
𝜉 ← ̄𝒮.𝜎
postTx (close, ̂𝑣, ̄𝒮.𝑣, ̄𝒮.𝑠, 𝜂, 𝜂𝛼, 𝜂𝜔, 𝜉)

on (closeTx, 𝜂) ∨ (contestTx, 𝑠𝑐, 𝜂) from chain
if ̄𝒮.𝑠 > 𝑠𝑐

𝜂 ← combine(̄𝒮.𝑈)
𝜂𝛼 ← combine(̄𝒮.𝑈𝛼)
𝜂𝜔 ← combine(̄𝒮.𝑈𝜔)
𝜉 ← ̄𝒮.𝜎
postTx (contest, ̂𝑣, ̄𝒮.𝑣, ̄𝒮.𝑠, 𝜂, 𝜂𝛼, 𝜂𝜔, 𝜉)

Figure 14: Head-protocol machine for the coordinated head from the perspective of party p𝑖.

In figure:
combine
on UTxO
slightly
different
than on
commits

7 Security (WIP — Iteration 1)

The secu-
rity analy-
sis is still
sketchy,
with the
goal to
make it
more for-
mal in
upcoming
iterations

Add se-
curity ex-
periment

Adversaries:

Active Adversary. An active adversary 𝒜 has full control over the protocol, i.e., he is fully
unrestricted in the above security game.

above this
section
there is
no secu-
rity game

Network Adversary. A network adversary 𝒜∅ does not corrupt any head parties, eventually
delivers all sent network messages (i.e., does not drop any messages), and does not cause
the close event. Apart from this restriction, the adversary can act arbitrarily in the above
experiment.

Random variables:

• ̂𝑆𝑖: the set of transactions tx for which party p𝑖, while uncorrupted, output (seen, tx);
• ̄𝐶𝑖: the set of transactions tx for which party p𝑖, while uncorrupted, output (conf, tx);
• Σ̄𝑖: latest snapshot (𝑠, 𝑈) that party p𝑖 performed while uncorrupted: output (snap, (𝑠, 𝑈));
• 𝐻cont: the set of (at the time) uncorrupted parties who produced 𝜉 upon close/contest request

and 𝜉 was applied to correct 𝜂; and

• ℋ: the set of parties that remain uncorrupted.

Security conditions / events:

• Consistency (Head): In presence of an active adversary, the following condition holds
at any point in time: For all 𝑖, 𝑗, 𝑈0 ∘ (̄𝐶𝑖 ∪ ̄𝐶𝑗) ≠ ⊥, i.e., no two uncorrupted parties see
conflicting transactions confirmed.

• Oblivious Liveness (Head): Consider any protocol execution in presence of a network
adversary wherein the head does not get closed for a sufficiently long period of time, and
consider an honest party 𝑝𝑖 who enters transaction tx by executing (newTx, tx) each time
after having finished a snapshot.

34

Then the following eventually holds: tx ∈ ⋂𝑖∈[𝑛]
̄𝐶𝑖 ∨ ∀𝑖 ∶ 𝑈0 ∘ (̄𝐶𝑖 ∪ {tx}) = ⊥, i.e., every

party will observe the transaction confirmed or every party will observe the transaction in
conflict with their confirmed transactions.11

• Soundness (Chain): In presence of an active adversary, the following condition is satisfied:
∃ ̃𝑆 ⊆ ⋂𝑖∈ℋ

̂𝑆𝑖 ∶ 𝑈final = 𝑈0 ∘ ̃𝑆 ≠ ⊥, i.e., the final UTxO set results from applying a set of
transactions to 𝑈0 that have been seen by all honest parties (wheras each such transaction
applies conforming to the ledger rules).

• Completeness (Chain): In presence of an active adversary, the following condition holds:
For ̃𝑆 as above, ⋃𝑝𝑖∈𝐻cont

̄𝐶𝑖 ⊆ ̃𝑆, i.e., all transactions seen as confirmed by an honest party
at the end of the protocol are considered.

Note that the original version of the coordinated head satisfies a stronger version of liveness
which is important for the ’user experience’ in the protocol:

• Liveness (Head): Consider any protocol execution in presence of a network adversary
wherein the head does not get closed for a sufficiently long period of time, and consider an
honest party 𝑝𝑖 who enters transaction tx by executing (newTx, tx).
Then the following eventually holds: tx ∈ ⋂𝑖∈[𝑛]

̄𝐶𝑖 ∨ ∀𝑖 ∶ 𝑈0 ∘ (̄𝐶𝑖 ∪ {tx}) = ⊥, i.e., every
party will observe the transaction confirmed or every party will observe the transaction in
conflict with their confirmed transactions.12

7.1 Proofs
Consistency.

Lemma 1 (Consistency). The coordinated head protocol satisfies the Consistency property.

Proof. Observe that ̄𝐶𝑖 ∪ ̄𝐶𝑗 ⊆ ̂𝑆𝑖 since no transaction can be confirmed without every honest
party signing off on it. Since parties do not sign conflicting transactions (see reqSn, ‘wait’), we
have 𝑈0 ∘ ̄𝐶𝑖 ≠ ⊥, 𝑈0 ∘ ̄𝐶𝑗 ≠ ⊥, and 𝑈0 ∘ ̂𝑆𝑖 ≠ ⊥. Thus, since ̄𝐶𝑖 ∪ ̄𝐶𝑗 ⊆ ̂𝑆𝑖 it follows that
𝑈0 ∘ (̄𝐶𝑖 ∪ ̄𝐶𝑗) ≠ ⊥

Oblivious Liveness. For all lemmas towards oblivious liveness, we assume the presence of a
network adversary, and that the head does not get closed for a sufficiently long period of time. We
call this the liveness condition.

Lemma 2. Under the liveness condition, any snapshot issued as (reqSn, 𝑠, 𝑇) will eventually be
confirmed in the sense that every party holds a valid mulisignature on it.

Proof. Consider a party 𝑝𝑖 receiving message (reqSn, 𝑠, 𝑇). We demonstrate that 𝑝𝑖 executes the
code past the ‘wait’ instruction of the reqSn routine.

11In particular, liveness expresses that the protocol makes progress under reasonable network conditions if no head
parties get corrupted.

12In particular, liveness expresses that the protocol makes progress under reasonable network conditions if no head
parties get corrupted.

35

• Passing the ‘require’ guard: Note that the snapshot leader sends the request only if ̂𝑠 = ̄𝑠,
and for 𝑠 = ̂𝑠 + 1. Thus, ̂𝑠𝑖 = ̂𝑠 since 𝑝𝑖 has already signed the snapshot for ̂𝑠. The ‘require’
guard is thus satisfied for 𝑝𝑖.

• Passing the ‘wait’ guard: Since the snapshot leader sees ̂𝑠 = ̄𝑠, also 𝑝𝑖 will eventually see
̂𝑠𝑖 = ̄𝑠𝑖. Furthermore, since all leaders are honest, it holds that �̂� ∘ 𝒯𝑟𝑒𝑠 ≠ ⊥ by construction.

This implies that every party will eventually sign and acknowledge the newly created snapshot.
Finally, the ‘require’ and ‘wait’ guards of the ackSn code will be passed by every party since an
ackSn for snapshot number 𝑠 can only be received for 𝑠 ∈ { ̂𝑠, ̂𝑠+1} as an acknowledgement can only
be received for the current snapshot being worked on by 𝑝𝑖 or a snapshot that is one step ahead—
implying that everybody will hold a valid multisignature on the snapshot in consideration.

Lemma 3 (Eternal snapshot confirmation). Under the liveness condition, as long as new
transactions are issued, for any 𝑘 > 0, every party eventually confirms a snapshot with sequence
number 𝑠 = 𝑘.

Proof. By Lemma 2, any requested snapshot eventually gets confirmed, implying that the next
leader observes ̂𝑠 = ̄𝑠 and thus, in turn, issues a new snapshot. Thus, for any 𝑘, a snapshot is
eventually confirmed.

Lemma 4 (Oblivious Liveness). The coordinated head protocol satisfies the Oblivious Live-
ness property.

Proof. Consider the first point in time where a transaction tx enters the system by some party 𝑝𝑖
issuing (newTx, tx), and consider the next point in time 𝑡 when 𝑝𝑖 issues a snapshot.

By Lemma 3, this snapshot will eventually be issued and confirmed by all parties.
Let �̂� be the transactions to be considered by 𝑝𝑖’s snapshot: ̂ℒ = �̄�∘ �̂� where �̄� is the snapshot

prior to 𝑝𝑖’s. Since 𝑝𝑖 issues (reqTx, tx) after each snapshot, we have that, either,

• tx ∈ �̂�, in which case tx ∈ ⋂𝑖∈[𝑛]
̄𝐶𝑖 after everybody has completed this snapshot, or,

• tx ∉ �̂�, in which case ̂ℒ ∘ tx = ⊥ (tx is still in the wait queue of (reqTx, tx). After everybody
has completed this snapshot, it thus holds that ∀𝑖 ∶ 𝑈0 ∘ ̄𝐶𝑖 = ̂ℒ, and thus, that ∀𝑖 ∶
𝑈0 ∘ (̄𝐶𝑖 ∪ {tx}) = ⊥.

In both cases, the lemma follows.

Soundness and completeness.
Lemma 5 (Soundness). The basic head protocol satisfies the Soundness property.

Proof. Let 𝑇 be the set of transactions such that 𝑈final = 𝑈0 ∘𝑇 . Since 𝑈final is multi-signed, it holds
that 𝑇 ⊆ ̂𝑆𝑖 (𝑇 is seen) by every honest party in the head. Furthermore, since honest signatures are
only issued for valid transaction, 𝑈final ≠ ⊥ (i.e., 𝑈final is a valid state), and soundness follows.

Lemma 6 (Completeness). The basic head protocol satisfies the Completeness property.

Proof. Consider all parties 𝑝𝑖 ∈ 𝐻cont. Since the close/contest process finally accepts the lat-
est multi-signed snapshot, it holds that 𝑈final.𝑠 ≥ max𝑝𝑖∈𝐻cont

(̄𝑠𝑖), and thus that ⋃𝑝𝑖∈𝐻cont
̄𝐶𝑖 ⊆

⋂𝑝𝑖∈ℋ
̂𝑆𝑖, and completeness follows.

36

References
[1] Extended UTXO-2 model. https://github.com/hydra-supplementary-material/eutxo-

spec/blob/master/extended-utxo-specification.pdf.

[2] A formal specification of the cardano ledger. https://github.com/input-output-hk/
cardano-ledger/releases/latest/download/shelley-ledger.pdf.

[3] A formal specification of the cardano ledger integrating plutus core. https://github.com/
input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf.

[4] Hydra repository. https://github.com/input-output-hk/hydra.

[5] Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. A formal model of
Bitcoin transactions. In Financial Cryptography and Data Security - 22nd International Con-
ference, FC 2018, Nieuwpoort, Curaçao, February 26 - March 2, 2018, Revised Selected Papers,
pages 541–560, 2018.

[6] Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian,
Michael Peyton Jones, and Philip Wadler. The extended UTxO model. In 4th Workshop
on Trusted Smart Contracts, 2020. http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20_paper_
25.pdf.

[7] Manuel M. T. Chakravarty, James Chapman, Kenneth M. Mackenzie, Orestis Melkonian,
Jann, Müller, Michael Peyton Jones, Polina Vinogradova, Philip Wadler, Joachim, and Zah-
nentferner. Utxoma: Utxo with multi-asset support. 2020.

[8] Manuel MT Chakravarty, Sandro Coretti, Matthias Fitzi, Peter Gazi, Philipp Kant, Aggelos
Kiayias, and Alexander Russell. Hydra: Fast isomorphic state channels. Cryptology ePrint
Archive, 2020.

[9] Kazuharu Itakura and Katsuhiro Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC Research & Development, (71):1–8, 1983.

[10] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: Ex-
tended abstract. pages 245–254, 2001.

[11] Joachim Zahnentferner. An abstract model of UTxO-based cryptocurrencies with scripts.
IACR Cryptology ePrint Archive, 2018:469, 2018.

37

https://github.com/hydra-supplementary-material/eutxo-spec/blob/master/extended-utxo-specification.pdf
https://github.com/hydra-supplementary-material/eutxo-spec/blob/master/extended-utxo-specification.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf
https://github.com/input-output-hk/hydra
http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20_paper_25.pdf
http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20_paper_25.pdf

	Introduction
	Protocol Overview
	Opening the head
	The Coordinated Head protocol
	Closing the head
	Differences

	Preliminaries
	Notation
	Public key multi-signature scheme
	Extended UTxO

	Protocol Setup
	On-chain Protocol
	Init transaction
	Commit Transaction
	Abort Transaction
	CollectCom Transaction
	Deposit Transaction
	Recover Transaction
	Increment Transaction
	Decrement Transaction
	Close Transaction
	Contest Transaction
	Fan-Out Transaction

	Off-Chain Protocol
	Assumptions
	Notation
	Variables
	Protocol flow
	Rollbacks and protocol changes

	Security (WIP — Iteration 1)
	Proofs

