
Hydra HeadV1 Specification: Coordinated Head protocol

DRAFT

Sebastian Nagel sebastian.nagel@iohk.io

March 11, 2024

1 Introduction

This document specifies the ’Coordinated Hydra Head’ protocol to be implemented as the first
version of Hydra Head on Cardano - Hydra HeadV1. The protocol is derived from variants
described in the original paper [8], but was further simplified to make a first implementation on
Cardano possible.

Note that the format and scope of this document is (currently) also inspired by the paper and
hence does not include a definition of the networking protocols or concrete message formats. It is Add:

network
specifi-
cation
(message
formats)

structured similarly, but focuses on a single variant, and avoids indirections and unnecessary gener-
alizations. The document is kept in sync with the reference implementation available on Github [4].
Red sections indicate that they are currently not covered or missing in the implementation, where
blue parts mean a difference in how it is realized.

First, a high-level overview of the protocol and how it differs from legacy variants of the Head
protocol is given in Section 2. Relevant definitions and notations are introduced in Section 3, while
Section 4 describes protocol setup and assumptions. Then, the actual on-chain transactions of the
protocol are defined in Section 5, before the off-chain protocol part specifies behavior of Hydra
parties off-chain and ties the knot with on-chain transactions in Section 6. At last, Section 7 gives
the security definition, properties and proofs for the Coordinated Head protocol.

2 Protocol Overview

The Hydra Head protocol provides functionality to lock a set of UTxOs on a blockchain, referred
to as the mainchain, and evolve it inside a so-called off-chain head, independently of the mainchain.
At any point, the head can be closed with the effect that the locked set of UTxOs on the main-
chain is replaced by the latest set of UTxOs inside the head. The protocol guarantees full wealth
preservation: no generation of funds can happen off-chain (inside a head) and no responsive honest
party involved in a head can ever lose any funds other than by consenting to give them away. In
exchange for decreased liveness guarantees (stop any time), it can essentially proceed at network
speed under good conditions, thereby reducing latency and increasing throughput. At the same
time, the head protocol provides the same capabilities as the mainchain by reusing the same ledger
model and transaction formats — making the protocol ”isomorphic”.

1



initialinit

open closed

final

collect

close

fanout

contest

abort

Figure 1: Mainchain state diagram for this version of the Hydra protocol.

2.1 Opening the head

To create a head-protocol instance, any party may take the role of an initiator and ask other
parties, the head members, to participate in the head by exchanging public keys and agreeing on
other protocol parameters. These public keys are used for both, the authentication of head-related
on-chain transactions that are restricted to head members (e.g., a non-member is not allowed to
close the head) and for signing off-chain transactions in the head.

The initiator then establishes the head by submitting an initial transaction to the mainchain
that contains the Hydra protocol parameters and mints special participation tokens (PT) identifying
the head members. The initial transaction also initializes a state machine (see Fig. 1) that manages
the “transfer” of UTxOs into the head and back. The state machine comprises the four states:
initial, open, closed, and final. A state thread token (ST) minted in initial marks the head output
and ensures contract continuity [6].

Once the initial transaction appears on the mainchain, establishing the initial state initial, each
head member can attach a commit transaction, which locks (on the mainchain) the UTxOs that
the party wants to commit to the head, or deliberately acknowledges to commit nothing.

The commit transactions are subsequently collected by the collectCom transaction causing a
transition from initial to open. Once the open state is confirmed, the head members start running the
off-chain head protocol, which evolves the initial UTxO set (the union over all UTxOs committed
by all head members) independently of the mainchain. For the case where some head members fail
to post a commit transaction, the head can be aborted by going directly from initial to final.

2.2 The Coordinated Head protocol

The actual Head protocol starts after the initialization phase with an initial set of UTxOs that is
identical to the UTxOs locked on-chain via the commit and collectCom transactions.

The protocol processes off-chain transactions by distributing them between participants, while
each party maintains their view of the local UTxO state. That is, the current set of UTxOs evolved
from the initial UTxO set by applying transactions as they are received from the other parties.

To confirm transactions and allow for an on-chain decommit of the resulting UTxO set without
needing the whole transaction history, snapshots are created by the protocol participants. The
initial snapshot U0 corresponds to the initial UTxO set, while snapshots thereafter U1, U2, . . . are
created with monotonically increasing snapshot numbers.

2



For this, the next snapshot leader (round-robin) requests his view of a new confirmed state
to be signed by all participants as a new snapshot. The leader does not need to send his local
state, but only indicate, by hashes, the set of transactions to be included in order to obtain the
to-be-snapshotted UTxO set.

The other participants sign the snapshot as soon as they have (also) seen the transactions that
are to be processed on top of its preceding snapshot: a party’s local state is always ahead of the
latest confirmed snapshot.

Signatures are broadcast and aggregated by each party. When all signature parts of the multi-
signature are received and verified, a snapshot is considered confirmed. As a consequence, a partic-
ipant can safely delete (if wished) all transactions that have been processed into it as the snapshot’s
multi-signature is now evidence that this state once existed during the head evolution.

2.3 Closing the head

The head protocol is designed to allow any head member at any point in time to produce, without
interaction, a certificate to close the head. This certificate is created from the latest confirmed
snapshot, specifically from its snapshot number and the respective multisignature. Using this
certificate, the head member may “force close” the head by advancing the mainchain state machine
to the closed state.

Once in closed, the state machine grants parties a contestation period, during which parties may
contest the closure by posting the certificate of a newer snapshot on-chain in a contest transaction.
Contesting leads back to the state closed and each party can contest at most once. After the
contestation period has elapsed, the state machine may proceed to the final state. The state
machine enforces that the outputs of the transaction leading to final correspond exactly to the
latest UTxO set seen during the contestation period.

2.4 Differences

In the Coordinated Head protocol, off-chain consensus is simplified by not having transactions
confirmed concurrently to the snapshots (and to each other) but having the snapshot leader propose,
in their snapshot, a set of transactions for explicit confirmation. The parties’ views of confirmed
transactions thus progress in sync with each other (once per confirmed snapshot), thus simplifying
the close/contest procedure on the mainchain. Also, there is no need for conflict resolution as in
Appendix B of [8]. In summary, the differences to the original Head protocol in [8] are:

• No hanging transactions due to ‘coordination’.

• No acknowledgement nor confirmation of transactions.

• No confirmation message for snapshots (two-round local confirmation).

3



3 Preliminaries

This section introduces notation and other preliminaries used in the remainder of the specification.

3.1 Notation

The specification uses set-notation based approach while also inspired by [1] and [6]. Values a are
in a set a ∈ A, also indicated as being of some type a : A, and multidimensional values are tuples
drawn from a × product of multiple sets, e.g. (a, b) ∈ (A × B). An empty set is indicated by ∅
and sets may be enumerated using {a1 . . . an} notation. The = operator means equality and ← is
explicit assignment of a variable or value to one or more variables. Projection is used to access the
elements of a tuple, e.g. (a, b)↓1 = a. Functions are morphisms mapping from one set to another
x : A → f(x) : B, where function application of a function f to an argument x is written as f(x).

Furthermore, given a set A, let

• A? = A ∪ ♢ denotes an option: a value from A or no value at all,

• An be the set of all n-sized sequences over A,

• A! =
⋃n∈N

i=1 Ai be the set of non-empty sequences over A, and

• A∗ =
⋃n∈N

i=0 Ai be the set of all sequences over A.

With this, we further define:

• B = {false, true} are boolean values

• N are natural numbers {0, 1, 2, . . .}

• Z are integer numbers {. . . , –2, –1, 0, 1, 2, . . .}

• H =
⋃inf

n=0 {0, 1}
8n denotes a arbitrary string of bytes

• concat : H∗ → H is concatenating bytes, we also use operator
⊕

for this

• hash : x→ H denotes a collision-resistant hashing function and x# indicates the hash of x

• bytes : x→ H denotes an invertible serialisation function mapping arbitrary data to bytes

• a||b = concat(bytes(a), bytes(b)) is an operator which concatenates the bytes(b) to the bytes(a)

• Lists of values l ∈ A∗ are written as l = [x1, . . . , xn]. Empty lists are denoted by [], the
ith element xi is also written l[i] and the length of the list is |l| = n. An underscore is also
used to indicate a list of values x = l. Projection on lists are mapped to their elements, i.e.
x↓1 = [x↓11 , . . . , x↓1n ].

• sortOn : i→ A∗ → A∗ does sort a list of values on the ith projection.

• Data is a universal data type of nested sums and products built up recursively from the base
types of Z and H.

4



3.2 Public key multi-signature scheme

A multisignature scheme is a set of algorithms where

• MS-Setup generates public parameters Π, such that

• (kver, ksig)← MS-KG(Π) can be used to generate fresh key pairs,

• σ ← MS-Sign(Π, ksig,m) signs a message m using key ksig,

• k̃ ← MS-AVK(Π, k) aggregates a list of verification keys k into a single, aggregate key k̃,

• σ̃ ← MS-ASig(Π,m, k, σ) aggregates a list of signatures σ about message m into a single,
aggregate signature σ̃.

• MS-Verify(Π, k̃,m, σ̃) ∈ B verifies an aggregate signature σ̃ of message m under an aggregate
verification key k̃.

The security definition of a multisignature scheme from [9, 10] guarantees that, if k̃ is produced
from a tuple of verification keys k via MS-AVK, then no aggregate signature σ̃ can pass verification
MS-Verify(k̃,m, σ̃) unless all honest parties holding keys in k signed m.

Note that in the following, we make the parameter Π implicit and leave out the ver suffix for
verification key such that k = kver for better readability.

3.3 Extended UTxO

The Hydra Head protocol is specified to work on the so-called Extended UTxO (EUTxO) ledgers
like Cardano.

The basis for EUTxO is Bitcoin’s UTxO ledger model [5, 11]. Intuitively, it arranges transactions
in a directed acyclic graph, such as the one in Figure 2, where boxes represent transactions with
(red) inputs to the left and (black) outputs to the right. A dangling (unconnected) output is an
unspent transaction output (UTxO) — there are two UTxOs in the figure.

(5, ν1)

(1, ν2) ρ1ρ2

(2, ν3)

(6, ν4)

(9, ν5)

(3, ν6)
(14, ν7)ρ3

ρ4

ρ5

ρ6

ρ7

ρ8

Figure 2: Example of a plain UTxO graph

The following paragraphs will give definitions of the UTxO model and it’s extension to sup-
port scripting (EUTxO) suitable for this Hydra Head protocol specification. For a more detailed
introduction to the EUTxO ledger model, see [6], [1] and [7].

5



3.3.1 Values

Definition 1 (Values). Values are sets that keep track of how many units of which tokens of
which currency are available. Given a finitely supported function 7→, that maps keys to monoids,
a value is the set of such mappings over currencies (minting policy identifiers), over a mapping of
token names t to quantities q:

val ∈ Val = (c : H 7→ (t : H 7→ q : Z))

where addition of values is defined as + and ∅ is the empty value.

For example, the value {c1 7→ {t1 7→ 1, t2 7→ 1}} contains tokens t1 and t2 of currency c1 and
addition merges currencies and token names naturally:

{c1 7→ {t1 7→ 1, t2 7→ 1}}
+ {c1 7→ {t2 7→ 1, t3 7→ 1}, c2 7→ {t1 7→ 2}}
= {c1 7→ {t1 7→ 1, t2 7→ 2, t3 7→ 1}, c2 7→ {t1 7→ 2}} .

While the above definition should be sufficient for the purpose of this specification, a full
definition for finitely supported functions and values as used here can be found in [7]. To further
improve readability, we define the following shorthands:

• {t1, . . . , tn} :: c for a set positive single quantity assets {c 7→ {t1 7→ 1, . . . , tn 7→ 1}},

• {t1, . . . , tn}−1 :: c for a set of negative single quantity assets {c 7→ {t1 7→ −1, . . . , tn 7→ −1}},

• {c 7→ t 7→ q} for the value entry {c 7→ {t 7→ q}},

• {c 7→ · 7→ q} for any asset with currency c and quantity q irrespective of token name.

3.3.2 Scripts

Validator scripts are called phase-2 scripts in the Cardano Ledger specification (see [3] for a formal
treatment of these). Scripts are used for multiple purposes, but most often (and sufficient for this
specification) as a spending or minting policy script.

Definition 2 (Minting Policy Script). A script µ ∈ M governing whether a value can be
minted (or burned), is a pure function with type

µ ∈M = (ρ : Data)→ (γ : Γ)→ B,

where ρ ∈ Data is the redeemer provided as part of the transaction being validated and γ ∈ Γ is the
validation context.

Definition 3 (Spending Validator Script). A validator script ν ∈ V governing whether an
output can be spent, is a pure function with type

ν ∈ V = (δ : Data)→ (ρ : Data)→ (γ : Γ)→ B,

where δ ∈ Data is the datum available at the output to be spent, ρ ∈ Data is the redeemer data
provided as part of the transaction being validated, and γ ∈ Γ is the validation context.

6



3.3.3 Transactions

We define EUTxO inputs, outputs and transactions as they are available to scripts and just enough
to specify the behavior of the Hydra validator scripts. For example outputs addresses and datums
are much more complicated in the full ledger model [1, 2].

Definition 4 (Outputs). An output o ∈ O stores some value val ∈ Val at some address, defined
by the hash of a validator script ν# ∈ H = hash(ν ∈ V), and may store (reference) some data
δ ∈ Data:

o ∈ O = (val : Val× ν# : H× δ : Data)

Definition 5 (Output references). An output reference ϕ ∈ Φ points to an output of a trans-
action, using a transaction id (that is, a hash of the transaction body) and the output index within
that transaction.

ϕ ∈ Φ = (H× N)

Definition 6 (Inputs). A transaction input i ∈ I is an output reference ϕ ∈ Φ with a corre-
sponding redeemer ρ ∈ Data:

i ∈ I = (ϕ : Φ× ρ : Data)

Definition 7 (Validation Context). A validation context γ ∈ Γ is a view on the transaction
to be validated:

γ ∈ Γ = (I∗ ×O∗ × Val× S↔ ×K)

where I ∈ I∗ is a set of inputs, O ∈ O∗ is a list of outputs, mint ∈ Val is the minted (or burned)
value, (tmin, tmax) ∈ S↔ are the lower and upper validity bounds where tmin <= tmax, and κ ∈ K is
the set of verification keys which signed the transaction.

Informally, scripts are evaluated by the ledger when it applies a transaction to its current state
to yield a new ledger state (besides checking the transaction integrity, signatures and ledger rules).
Each validator script referenced by an output is passed its arguments drawn from the output it
locks and the transaction context it is executed in. The transaction is valid if and only if all scripts
validate, i.e. µ(ρ, γ) = true and ν(δ, ρ, γ) = true.

3.3.4 State machines and graphical notation

State machines in the EUTxO ledger model are commonly described using the constraint emitting
machine (CEM) formalism [6], e.g. the original paper describes the Hydra Head protocol using this
notation [8]. Although inspired by CEMs, this specification uses a more direct representation of in-
dividual transactions to simplify description of non-state-machine transactions and help translation
to concrete implementations on Cardano. The structure of the state machine is enforced on-chain
through scripts which run as part of the ledger’s validation of a transaction (see Section 3.3). For
each protocol transaction, the specification defines the structure of the transaction and enumerates
the transaction constraints enforced by the scripts (tx≡ in the CEM formalism). Add an

exam-
ple graph
with a
legend

7



4 Protocol Setup

In order to create a head-protocol instance, an initiator invites a set of participants (the initiator
being one of them) to join by announcing to them the protocol parameters.

• For on-chain transaction authentication (Cardano) purposes, each party pi generates a cor-
responding key pair (kveri , ksigi ) and sends their verification key kveri to all other parties. In
the case of Cardano, these are Ed25519 keys.

• For off-chain signing (Hydra) purposes, a very basic multisignature scheme (MS, as defined
in Section 3.2) based on EdDSA using Ed25519 keys is used:

– MS-KG is Ed25519 key generation (requires no parameters)

– MS-Sign creates an EdDSA signature

– MS-AVK is concatenation of verification keys into an ordered list

– MS-ASig is concatenation of signatures into an ordered list

– MS-Verify verifies the ”aggregate” signature by verifying each individual EdDSA signa-
ture under the corresponding Ed25519 verification key

To help distinguish on- and off-chain key sets, Cardano verification keys are written kC, while
Hydra verification keys are indicated as kH for the remainder of this document.

• Each party pi generates a hydra key pair and sends their hydra verification key to all other
parties.

• Each party pi computes the aggregate key from the received verification keys, stores the
aggregate key, their signing key as well as the number of participants n.

• Each party establishes pairwise communication channels to all other parties. That is, every
network message received from a specific party is checked for (channel) authentication. It
is the implementer’s duty to find a suitable authentication process for the communication
channels.

• All parties agree on a contestation period T .

If any of the above fails (or the party does not agree to join the head in the first place), the
party aborts the initiation protocol and ignores any further action. Finally, at least one of the
participants posts the init transaction onchain as described next in Section 5.

8



5 On-chain Protocol
Open
problem:
ensure
abort is
always
possible.
e.g. by
individual
aborts or
undoing
commits

Open
problem:
ensure
fanout is
always
possible,
e.g. by
limiting
complex-
ity of U0

The following sections describe the the on-chain protocol controlling the life-cycle of a Hydra
head, which can be intuitively described as a state machine (see Figure 1). Each transition in this
state machine is represented and caused by a corresponding Hydra protocol transaction on-chain:
init, commit, abort, collectCom, close, contest, and fanout.
The protocol defines one minting policy script and three validator scripts:

• µhead governs minting of state and participation tokens in init and burning of these tokens in
abort and fanout.

• νinitial controls how UTxOs are committed to the head in commit or when the head initiali-
azation is aborted via abort.

• νcommit controls the collection of committed UTxOs into the head in collectCom or that funds
are reimbursed in an abort.

• νhead represents the main protocol state machine logic and ensures contract continuity through-
out collectCom, close, contest and fanout.

5.1 Init transaction

The init transaction creates a head instance and establishes the initial state of the protocol and is
shown in Figure 3. The head instance is represented by the unique currency identifier cid created
by minting tokens using the µhead minting policy script which is parameterized by a single output
reference parameter ϕseed ∈ Φ:

cid = hash(µhead(ϕseed))

Two kinds of tokens are minted:

• A single State Thread (ST) token marking the head output. This output contains the state
of the protocol on-chain and the token ensures contract continuity. The token name is the
well known string HydraHeadV1, i.e. ST = {cid 7→ HydraHeadV1 7→ 1}.

• One Participation Token (PT) per participant i ∈ {1 . . . n} to be used for authenticating
further transactions and to ensure every participant can commit and cannot be censored.
The token name is the participant’s verification key hash k#i = hash(kveri ) of the verification

key as received during protocol setup, i.e. PTi = {cid 7→ k#i 7→ 1}.

Consequently, the init transaction

• has at least input ϕseed,

• mints the state thread token ST, and one PT for each of the n participants with policy cid,

• has n initial outputs oinitiali with datum δinitial = cid,

• has one head output ohead, which captures the initial state of the protocol in the datum

δhead = (initial, cid′, ϕ′
seed, k̃H, n, T )

where

9



initTx

...

Figure 3: init transaction spending a seed UTxO, and producing the head output in state initial and initial
outputs for each participant.

– initial is a state identifier,

– cid′ is the unique currency id of this instance,

– ϕ′
seed is the output reference parameter of µhead,

– k̃H is the aggregated off-chain multi-signature key established during the setup phase,

– n is the number of head participants, and

– T is the contestation period.

The µhead(ϕseed) minting policy is the only script that verifies init transactions and can be redeemed
with either a mint or burn redeemer:

• When evaluated with the mint redeemer,

1. The seed output is spent in this transaction. This guarantees uniqueness of the policy
cid because the EUTxO ledger ensures that ϕseed cannot be spent twice in the same
chain. (ϕseed, ·) ∈ I

2. All entries of mint are of this policy and of single quantity ∀{c 7→ · 7→ q} ∈ mint : c =
cid ∧ q = 1

3. Right number of tokens are minted |mint| = n+ 1

4. State token is sent to the head validator ST ∈ valhead

5. The correct number of initial outputs are present |(·, νinitial, ·) ∈ O| = n

6. All participation tokens are sent to the initial validator as an initial output ∀i ∈ [1 . . . n] :
{cid 7→ · 7→ 1} ∈ valinitiali

7. The δhead contains own currency id cid = cid′ and the right seed reference ϕseed = ϕ′
seed

8. All initial outputs have a cid as their datum: ∀i ∈ [1 . . . n] : cid = δinitiali

10



• When evaluated with the burn redeemer,

1. All tokens for this policy in mint need to be of negative quantity ∀{cid 7→ · 7→ q} ∈ mint :
q < 0.

Important: The µhead minting policy only ensures uniqueness of cid, that the right amount of
tokens have been minted and sent to νhead and νinitial respectively, while these validators in turn
ensure continuity of the contract. However, it is crucial that all head members check that head
output always contains an ST token of policy cid which satisfies cid = hash(µhead(ϕseed)). The ϕseed

from a head datum can be used to determine this. Also, head members should verify whether
the correct verification key hashes are used in the PTs and the initial state is consistent with pa-
rameters agreed during setup. See the initialTx behavior in Figure 10 for details about these checks.

5.2 Commit Transaction

A commit transaction may be submitted by each participant ∀i ∈ {1 . . . n} to commit some UTxO
into the head or acknowledge to not commit anything. The transaction is depicted in Figure 4 and
has the following structure:

• One input spending from νinitial with datum δinitial , where value valinitiali holds a PTi, and the
redeemer ρinitial ∈ Φ∗ is a list of output references to be committed,

• zero or more inputs with reference ϕcommittedj spending output ocommittedj with valcommittedj ,

• one output paying to νcommit with value valcommiti and datum δcommit .

The νinitial validator with δinitial = cid and ρinitial = ϕ
committed

ensures that:

1. All committed value is in the output valcommiti ⊇ valinitiali ∪ (
⋃m

j=1 valcommittedj )
1

2. Currency id and committed outputs are recorded in the output datum δcommit = (cid, Ci),
where Ci = ∀j ∈ {1 . . .m} : [(ϕcommittedj , bytes(ocommittedj ))] is a list of all committed UTxO
recorded as tuples on-chain.

3. Transaction is signed by the right participant ∃{cid 7→ k#i 7→ 1} ∈ valinitial ⇒ k#i ∈ κ

4. No minting or burning mint = ∅

The νcommit validator ensures the output is collected by either a collectCom in Section 5.3 or abort
in Section 5.4 transaction of the on-chain state machine, selected by the appropriate redeemer. update

with mul-
tiple com-
mits

5.3 CollectCom Transaction

The collectCom transaction (Figure 5) collects all the committed UTxOs to the same head. It has

• one input spending from νhead holding the ST with δhead,

1The ⊇ is important for real world situations where the values might not be exactly equal due to ledger constraints
(i.e. to ensure a minimum value on outputs).

11



commitTx

Figure 4: commit transaction spending an initial output and a single committed output, and producing a
commit output.

• ∀i ∈ {1 . . . n} inputs spending commit outputs (valcommiti , νcommit, δcommiti) with PTi ∈ valcommiti

and δcommiti = (cid, Ci), and

• one output paying to νhead with value val′head and datum δ′head.

The state-machine validator νhead is spent with ρhead = collect and checks:

1. State is advanced from δhead ∼ initial to δ′head ∼ open, parameters cid, k̃H, n, T stay unchanged
and the new state is governed again by νhead:

(initial, cid, ϕseed, k̃H, n, T )
collect−−−−→ (open, cid, k̃H, n, T, η)

2. Commits collected in η = (0, U#) with snapshot number 0, where

U# = combine([C1, . . . , Cn])

combine(C) = hash(concat(sortOn(1, concat(C))↓2))

That is, given a list of committed UTxO C, where each element is a list of output references
and the serialised representation of what was committed, combine first concatenates all com-
mits together, sorts this list by the output references, concatenates all bytes and hashes the
result2.

3. All committed value captured and no value is extracted val′head = valhead ∪ (
⋃n

i=1 valcommiti).

4. Every participant had the chance to commit, by checking all tokens are present in output3

|{cid→ .→ 1} ∈ val′head| = n+ 1.

5. Transaction is signed by a participant ∃{cid 7→ k#i 7→ 1} ∈ valcommiti ⇒ k#i ∈ κ.

6. No minting or burning mint = ∅.

Each spent νcommit validator with δcommiti = (cid, ·) and ρcommiti = collect ensures that:

1. The state token of currency cid is present in the output value ST ∈ val′head.

2Sorting is required to ensure a canonical representation which can also be reproduced from the UTxO set later
in the fanout.

3This is sufficient as a Head participant would check off-chain whether a Head is initialized correctly with the
right number of tokens.

12



collectComTx

...

1

Figure 5: collectCom transaction spending the head output in initial state and collecting from multiple
commit outputs into a single open head output.

5.4 Abort Transaction

The abort transaction (see Figure 6) allows a party to abort the creation of a head and consists of

• one input spending from νhead holding the ST with δhead,

• ∀i ∈ {1 . . . n} inputs either

– spending from νinitial with with PTi ∈ valinitiali and δinitiali = cid, or

– spending from νcommit with with PTi ∈ valcommiti and δcommiti = (cid, Ci),

• outputs o1 . . . om to redistribute already committed UTxOs.

Note that abort represents a final transition of the state machine and hence there is no state
machine output.

13



abortTx

...

...

...

Figure 6: abort transaction spending the initial state head output and collecting all initial and commit
outputs, which get reimbursed by outputs o1 . . . om. Note that each PT may be in either, an initial or
commit output.

The state-machine validator νhead is spent with ρhead = (abort,m), where m is the number of
outputs to reimburse, and checks:

1. State is advanced from δhead ∼ initial to terminal state final:

(initial, cid, ϕseed, k̃H, n, T )
abort−−−→
m

final.

2. All UTxOs committed into the head are reimbursed exactly as they were committed. This is
done by comparing hashes of serialised representations of them reimbursing outputs o1 . . . om

4

with the canonically combined committed UTxOs in Ci:

hash(
m⊕
j=1

bytes(oj)) = combine([Ci | ∀[1 . . . n], Ci ̸= ⊥])

3. Transaction is signed by a participant ∃{cid 7→ k#i 7→ −1} ∈ mint⇒ k#i ∈ κ.

4. All tokens are burnt |{cid 7→ · 7→ −1} ∈ mint| = n+ 1.

Each spent νinitial validator with δinitiali = cid and ρinitiali = abort ensures that:

1. The state token of currency cid is getting burned {ST 7→ −1} ⊆ mint.

Each spent νcommit validator with δcommiti = (cid, ·) and ρcommiti = abort ensures that:

1. The state token of currency cid is getting burned {ST 7→ −1} ⊆ mint.

The µhead(ϕseed) minting policy governs the burning of tokens via redeemer burn that:

1. All tokens in mint need to be of negative quantity ∀{cid 7→ · 7→ q} ∈ mint : q < 0.
4Only the first m outputs are used for reimbursing, while more outputs may be present in the transaction, e.g for

returning change.

14



5.5 Close Transaction

In order to close a head, a head member may post the close transaction (see Figure 7). This
transaction has

• one input spending from νhead holding the ST with δhead,

• one output paying to νhead with value val′head and datum δ′head.

closeTx

1

Figure 7: close transaction spending the open head output and producing a closed head output.

The state-machine validator νhead is spent with ρhead = (close, ξ), where ξ is a multi-signature of
the to be closed snapshot, and checks:

1. State is advanced from δhead ∼ open to δ′head ∼ closed, parameters cid, k̃H, n, T stay unchanged
and the new state is governed again by νhead:

(open, cid, k̃H, n, T, η)
close−−−→
ξ

(closed, cid, k̃H, n, T, η0, η
′, C, tfinal)

2. Records the initial snapshot state η0 = η.
This makes off-chain signatures rollback and replay resistant, see 6.5 for details.

3. New snapshot state is the initial η0 or correctly signed by all participants in ξ.
Given the closed snapshot number s′ from (s′, ·) = η′,{

MS-Verify(k̃H,msg, ξ) = true if s′ > 0,
η′ = η0 otherwise.

where msg is the concatenated bytes of cid, η0 and η′: msg = (cid||η0||η′).

4. Initializes the set of contesters as C = ∅.
This allows the closing party to also contest and is required for use cases where pre-signed,
valid in the future, close transactions are used to delegate head closing.

5. Correct contestation deadline is set tfinal = tmax + T .

6. Transaction validity range is bounded by tmax − tmin ≤ T .
This ensures the contestation deadline tfinal is at most 2 ∗ T in the future.

7. Value in the head is preserved val′head = valhead.

8. Transaction is signed by a participant ∃{cid 7→ k#i 7→ 1} ∈ val′head ⇒ k#i ∈ κ.

9. No minting or burning mint = ∅.

15



5.6 Contest Transaction

The contest transaction (see Figure 8) is posted by a party to prove the currently closed state is
not the latest one. This transaction has

• one input spending from νhead holding the ST with δhead,

• one output paying to νhead with value val′head and datum δ′head.

contestTx

1

Figure 8: contest transaction spending the closed head output and producing a different closed head output.

The state-machine validator νhead is spent with ρhead = (contest, ξ), where ξ is a multi-signature of
the contest snapshot, and checks:

1. State stays closed in both δhead and δ′head, parameters cid, k̃H, n, T, η0 stay unchanged and the
new state is governed again by νhead:

(closed, cid, k̃H, n, T, η0, η, C, tfinal)
contest−−−−→

ξ
(closed, cid, k̃H, n, T, η0, η

′, C′, t′final)

2. Contest snapshot is newer s′ > s, where (s, ·) = η is the current and (s′, ·) = η′ is the contest
snapshot number.

3. ξ is a valid multi-signature of the new snapshot state MS-Verify(k̃H, (cid||η0||η′), ξ) = true.

4. The single signer {k#} = κ has not already contested k# /∈ C and is added to the set of
contesters C′ = C ∪ k#.

5. Transaction is posted before deadline tmax ≤ tfinal.

6. Contestation deadline is updated correctly to

t′final =

{
tfinal if |C′| = n,
tfinal + T otherwise.

7. Transaction is signed by a participant ∃{cid 7→ k#i 7→ 1} ∈ val′head ⇒ k#i ∈ κ.

8. Value in the head is preserved val′head = valhead.

9. No minting or burning mint = ∅.

16



5.7 Fan-Out Transaction

Once the contestation phase is over, a head may be finalized by posting a fanout transaction (see
Figure 9), which distributes UTxOs from the head according to the latest state. It consists of

• one input spending from νhead holding the ST, and

• outputs o1 . . . om to distribute UTxOs.

Note that fanout represents a final transition of the state machine and hence there is no state
machine output.

fanoutTx

...

...

Figure 9: fanout transaction spending the closed head output and distributing funds with outputs o1 . . . om.

The state-machine validator νhead is spent with ρhead = (fanout,m), where m is the number of
outputs to distribute, and checks:

1. State is advanced from δhead ∼ closed to terminal state final:

(closed, cid, k̃H, n, T, η0, η, C, tfinal)
fanout−−−−→
m

final

2. The first m outputs are distributing funds according to (·, U#) = η. That is, the outputs
exactly correspond to the UTxO canonically combined U# (see Section 5.3):

hash(
m⊕
j=1

bytes(oj)) = U#

3. Transaction is posted after contestation deadline tmin > tfinal.

4. All tokens are burnt |{cid 7→ · 7→ −1} ∈ mint| = n+ 1.

The µhead(ϕseed) minting policy governs the burning of tokens via redeemer burn that:

1. All tokens in mint need to be of negative quantity ∀{cid 7→ · 7→ q} ∈ mint : q < 0.

17



6 Off-Chain Protocol

This section describes the actual Coordinated Hydra Head protocol, an even more simplified version
of the original publication [8]. See the protocol overview in Section 2 for an introduction and notable
changes to the original protocol. While the on-chain part already describes the full life-cycle of
a Hydra head on-chain, this section completes the picture by defining how the protocol behaves
off-chain and notably the relationship between on- and off-chain semantics. Participants of the
protocol are also called Hydra head members, parties or simply protocol actors. The protocol is
specified as a reactive system that processes three kinds of inputs:

1. On-chain protocol transactions as introduced in Section 5, which are posted to the mainchain
and can be observed by all actors

2. Off-chain network messages sent between protocol actors (parties):

• reqTx: to request a transaction to be included in the next snapshot

• reqSn: to request a snapshot to be created & signed by every head member

• ackSn: to acknowledge a snapshot by replying with their signatures

3. Commands issued by the participants themselves or on behalf of end-users and clients

• init: to start initialization of a head

• newTx: to submit a new transaction to an open head

• close: to request closure of an open head

The behavior is fully specified in Figure 10, while the following paragraphs introduce notation,
explain variables and walk-through the protocol flow.

6.1 Assumptions

On top of the statements of the protocol setup in Section 4, the off-chain protocol logic relies on
these assumptions: move/merge

with pro-
tocol
setup?

• Every network message received from a specific party is checked for authentication. An
implementation of the specification needs to find a suitable means of authentication, either
on the communication channel or for individual messages. Unauthenticated messages must
be dropped.

• The head protocol gets correctly (and with completeness) notified about observed transactions
on-chain belonging to the respective head instance.

• All inputs are processed to completion, i.e. run-to-completion semantics and no preemption.

• Inputs are deduplicated. That is, any two identical inputs must not lead to multiple invoca-
tions of the handling semantics.

• Given the specification, inputs may pile up forever and implementations need to consider these
situations (i.e. potential for DoS). A valid reaction to this would be to just drop these inputs.
Note that, from a security standpoint, these situations are identical to a non-collaborative
peer and closing the head is also a possible reaction.

18



• The lifecycle of a Hydra head on-chain does not cross (hard fork) protocol update boundaries.
Note that these inputs are announced in advance hence it should be possible for implementa-
tions to react in such a way as to expedite closing of the head before such a protocol update.
This further assumes that the contestation period parameter is picked accordingly. Treat this

also in a
dedicated
section
like roll-
backs

6.2 Notation

missing:,
apply tx

• on event specifies how the protocol reacts on a given input event. Further information may
be available from the constituents of event and origin of the input.

• require p means that boolean expression p ∈ B must be satisfied for the further execution
of a routine, while discontinued on ¬p. A conservative protocol actor could interpret this as
a reason to close the head.

• wait p is a non-blocking wait for boolean predicate p ∈ B to be satisfied. On ¬p, the execution
of the routine is stopped, queued, and reactivated at latest when p is satisfied.

• multicast msg means that a message msg is (channel-) authenticated and sent to all partic-
ipants of this head, including the sender.

• postTx tx has a party create transaction tx, potentially from some data, and submit it
on-chain. See Section 5 for individual transaction details.

• output event signals an observation of event, which is used in the security definition and
proofs of Section 7. This keyword can be ignored when implementing the protocol.

6.3 Variables

Besides parameters agreed in the protocol setup (see Section 4), a party’s local state consists of the
following variables:

• ŝ: Sequence number of latest seen snapshot.

• s̄: Sequence number of latest confirmed snapshot.

• σ̄: Signature associated with the latest confirmed snapshot.

• Û : UTxO set of the latest seen snapshot.

• Ū : UTxO set associated with the latest confirmed snapshot.

• Σ̂ ∈ (N×H)∗: Accumulator of signatures of the latest seen snapshot, indexed by parties.

• L̂: UTxO set representing the local ledger state resulting from applying T̂ to Ū to validate
requested transactions.

• T̂ ∈ T ∗: List of transactions applied locally and pending inclusion in a snapshot (if this party
is the next leader).

• Tall ∈ (H× T )∗: Associative list of all seen transactions not yet included in a snapshot.

19



6.4 Protocol flow
Make con-
sistent
with fig-
ure again

6.4.1 Initializing the head

init. Before a head can be initialized, all parties need to exchange and agree on protocol param-
eters during the protocol setup phase (see Section 4), so we can assume the public Cardano keys
ksetupC , Hydra keys k̃setupH , as well as the contestation period T setup are available. One of the clients
then can start head initialization using the init command, which will result in an init transaction
being posted.

initialTx. All parties will receive this init transaction and validate announced parameters against
the pre-agreed setup parameters, as well as the structure of the transaction and the minting policy
used. This is a vital step to ensure the initialized Head is valid, which cannot be checked completely
on-chain (see also Section 5.1).

commitTx. As each party pj posts a commit transaction, the protocol records observed committed
UTxOs of each party Cj . With all committed UTxOs known, the η-state is created (as defined
in Section 5.3) and the collectCom transaction is posted. Note that while each participant may
post this transaction, only one of them will be included in the blockchain as the mainchain ledger
prevents double spending. Should any party want to abort, they would post an abort transaction
and the protocol would end at this point.

collectComTx. Upon observing the collectCom transaction, the parties compute U0 ←
⋃n

j=1Cj

using previously observed Cj and initialize Û = Ū = L̂ = U0 with it. The initial transaction sets
are empty T = T̄ = T̂ = ∅, and s̄ = ŝ = 0.

6.4.2 Processing transactions off-chain

Transactions are announced and captured in so-called snapshots. Parties generate snapshots in a
strictly sequential round-robin manner. The party responsible for issuing the ith snapshot is the
leader of the ith snapshot. Leader selection is round-robin per the kH from the protocol setup.
While the frequency of snapshots in the general Head protocol [8] was configurable, the Coordi-
nated Head protocol does specify a snapshot to be created after each transaction.

newTx. At any time, by sending request (newTx, tx), a client of the protocol can submit a new
transaction tx to the head, which results in it being sent out to all parties as a (reqTx, tx) message.

reqTx. Upon receiving request (reqTx, tx), the transaction gets recorded in Tall and applied to the
local ledger state L̂ ◦ tx. If not applicable yet, the protocol does wait to retry later or eventually
marks this transaction as invalid (see assumption about events piling up). After applying and if
there is no current snapshot “in flight” (ŝ = s̄) and the receiving party pi is the next snapshot
leader, a message to request snapshot signatures reqSn is sent.

20



reqSn. Upon receiving request (reqSn, s, T #
req) from party pj , the receiver pi checks that s is the

next snapshot number and that party pj is responsible for leading its creation. Party pi has to define
leaderwait until the previous snapshot is confirmed (s̄ = ŝ) and all requested transaction hashes T #

req can
be resolved in Tall. Then, all those resolved transactions Treq are required to be applicable to Ū ,
otherwise the snapshot is rejected as invalid. Only then, pi increments their seen-snapshot counter
ŝ, resets the signature accumulator Σ̂, and computes the UTxO set Û of the new (seen) snapshot as
Û ← Ū ◦ Treq. Then, pi creates a signature σi using their signing key ksigH on a message comprised
by the cid, the η0 corresponding to the initial UTxO set U0, and the new η′ given by the new
snapshot number ŝ and canonically combining Û (see Section 5.5 for details). The signature is sent
to all head members via message (ackSn, ŝ, σi). Finally, the pending transaction set T̂ gets pruned
by re-applying all locally pending transactions T̂ to the just requested snapshot’s UTxO set Û
iteratively and ultimately yielding a “pruned” version of T̂ and Û . Also, the set of all transactions
Tall can be reduced by the requested transactions Treq.

ackSn. Upon receiving acknowledgment (ackSn, s, σj), all participants require that it is from an
expected snapshot (either the last seen ŝ or + 1), potentially wait for the corresponding reqSn

such that ŝ = s and require that the signature is not yet included in Σ̂. They store the received
signature in the signature accumulator Σ̂, and if the signature from each party has been collected,
pi aggregates the multisignature σ̃ and require it to be valid. If everything is fine, the snapshot
can be considered confirmed by updating s̄ = s and participants also store the UTxO set in Ū , as
well as the signature in σ̄ for later reference. Similar to the reqTx, if pi is the next snapshot leader
and there are already transactions to snapshot in T̂ , a corresponding reqSn is distributed.

6.4.3 Closing the head

close. In order to close a head, a client issues the close input which uses the latest confirmed
snapshot Ū to create

• the new η-state η′ from the last confirmed UTxO set and snapshot number, and

• the certifiate ξ using the corresponding multi-signature.

With η′ and ξ, the close transaction can be constructed and posted. See Section 5.5 for details
about this transaction.

closeTx/contestTx. When a party observes the head getting closed or contested, the η-state
extracted from the close or contest transaction represents the latest head status that has been
aggregated on-chain so far (by a sequence of close and contest transactions). If the last confirmed
(off-chain) snapshot is newer than the observed (on-chain) snapshot number sc, an updated η-state
and certificate ξ is constructed posted in a contest transaction (see Section 5.6).

6.5 Rollbacks and protocol changes
Discuss
protocol
updates
as well,
also in
light of
rollbacks

The overall life-cycle of the Head protocol is driven by on-chain inputs (see introduction of
Section 6) which stem from observing transactions on the mainchain. Most blockchains, however,
do only provide eventual consistency. The consensus algorithm ensures a consistent view of the

21



history of blocks and transactions between all parties, but this so-called finality is only achieved
after some time and the local view of the blockchain history may change until that point.

On Cardano with it’s Ouroboros consensus algorithm, this means that any local view of the
mainchain may not be the longest chain and a node may switch to a longer chain, onto another fork.
This other version of the history may not include what was previously observed and hence, any
tracking state needs to be updated to this “new reality”. Practically, this means that an observer
of the blockchain sees a rollback followed by rollforwards.

For the Head protocol, this means that chain events like closeTx may be observed a second
time. Hence, it is crucial, that the local state of the Hydra protocol is kept in sync and also
rolled back accordingly to be able to observe and react to these events the right way, e.g. correctly
contesting this closeTx if need be.

The rollback handling can be specified fully orthogonal on top of the nominal protocol behavior,
if the chain provides strictly monotonically increasing points p on each chain event via a new or
wrapped rollforward event and rollback event with the point to which a rollback happened:

rollforward. On every chain event that is paired or wrapped in a rollforward event (rollback, p)
with point p, protocol participants store their head state indexed by this point in a history Ω of
states ∆← (ŝ, s̄, σ̄, Û , Ū , Σ̂, L̂, Tall, T̂ ) and Ω′ = (p,∆) ∪ Ω.

rollback. On a rollback (rollback, prb) to point prb, the corresponding head state ∆ need to be
retrieved from Ω, with the maximal point p ≤ prb, and all entries in Ω with p > prb get removed.

This will essentially reset the local head state to the right point and allow the protocol to
progress through the life-cycle normally. Most stages of the life-cycle are unproblematic if they are
rolled back, as long as the protocol logic behaves as in the nominal case.

A rollback “past open” is a special situation though. When a Head is open and snapshots have
been signed, but then a collectCom and one or more commit transactions were rolled back, a bad
actor could choose to commit a different UTxO and open the Head with a different initial UTxO
set, while the already signed snapshots would still be (cryptographically) valid. To mitigate this,
all signatures on snapshots need to incorporate the initial UTxO set by including η0. Write

about
contes-
tation
deadline
vs. roll-
backs

In figure:
combine
on UTxO
slightly
different
than on
commits

22



Coordinated Hydra Head

on (init) from client

n← |ksetupH |
k̃H ← MS-AVK(ksetupH )

kC ← ksetupC
T ← T setup

postTx (init, n, k̃H, kC, T )

on (initialTx, cid, ϕseed, n, k̃H, k
#
C , T ) from chain

require k̃H = MS-AVK(ksetupH )

require k#C = [hash(k) | ∀k ∈ ksetupC ]
require T = T setup

require cid = hash(µhead(ϕseed))

on (commitTx, j, U) from chain
Cj ← U
if ∀k ∈ [1..n] : Ck ̸= undef

η ← (0, combine([C1 . . . Cn]))
postTx (collectCom, η)

on (collectComTx, η0) from chain
U0 ←

⋃n
j=1 Uj

Û , Ū , L̂ ← U0

ŝ, s̄← 0

T , T̂ , T̄ ← ∅

on (newTx, tx) from client
multicast (reqTx, tx)

on (reqTx, tx) from pj
Tall ← Tall ∪ {(hash(tx), tx)}
wait L̂ ◦ tx ̸= ⊥
L̂ ← L̂ ◦ tx
T̂ ← T̂ ∪ {tx}
if ŝ = s̄ ∧ leader(s̄+ 1) = i

multicast (reqSn, s̄+ 1, T̂ )

on (reqSn, s, T #
req) from pj

require s = ŝ+ 1 ∧ leader(s) = j

wait s̄ = ŝ ∧ ∀h ∈ T #
req : (h, ·) ∈ Tall

Treq ← {Tall[h] | ∀h ∈ T #
req}

require Ū ◦ Treq ̸= ⊥
Û ← Ū ◦ Treq
ŝ← s̄+ 1

η′ ← (ŝ, combine(Û))
σi ← MS-Sign(ksigH , (cid||η0||η′))
Σ̂← ∅
multicast (ackSn, ŝ, σi)
∀tx ∈ Treq : output (seen, tx)

L̂ ← Û
X ← T̂
T̂ ← ∅
for tx ∈ X : L̂ ◦ tx ̸= ⊥
T̂ ← T̂ ∪ {tx} L̂ ← L̂ ◦ tx

Tall ← {tx | ∀tx ∈ Tall : tx /∈ Treq}

on (ackSn, s, σj) from pj
require s ∈ {ŝ, ŝ+ 1}
wait ŝ = s

require (j, ·) /∈ Σ̂

if ∀k ∈ [1..n] : (k, ·) ∈ Σ̂

σ̃ ← MS-ASig(ksetupH , Σ̂)

η′ ← (ŝ, combine(Û))
require MS-Verify(k̃H, (cid||η0||η′), σ̃)
Ū ← Û
s̄← ŝ
σ̄ ← σ̃
∀tx ∈ Treq : output(conf, tx)

if leader(s+ 1) = i ∧ T̂ ≠ ∅
multicast (reqSn, s+ 1, T̂ )

on (close) from client
η′ ← (s̄, combine(Ū))
ξ ← σ̄
postTx (close, η′, ξ)

on (closeTx, η) ∨ (contestTx, η) from chain
(sc, ·)← η
if s̄ > sc

η′ ← (s̄, combine(Ū))
ξ ← σ̄
postTx (contest, η′, ξ)

Figure 10: Head-protocol machine for the coordinated head from the perspective of party pi.
23



7 Security (WIP — Iteration 1)
The secu-
rity analy-
sis is still
sketchy,
with the
goal to
make it
more for-
mal in
upcoming
iterations

Add se-
curity ex-
periment

Adversaries:

Active Adversary. An active adversary A has full control over the protocol, i.e., he is fully
unrestricted in the above security game.

above this
section
there is
no secu-
rity game

Network Adversary. A network adversary A∅ does not corrupt any head parties, eventually
delivers all sent network messages (i.e., does not drop any messages), and does not cause
the close event. Apart from this restriction, the adversary can act arbitrarily in the above
experiment.

Random variables:

• Ŝi: the set of transactions tx for which party pi, while uncorrupted, output (seen, tx);

• C̄i: the set of transactions tx for which party pi, while uncorrupted, output (conf, tx);

• Σ̄i: latest snapshot (s, U) that party pi performed while uncorrupted : output (snap, (s, U));

• Hcont: the set of (at the time) uncorrupted parties who produced ξ upon close/contest request
and ξ was applied to correct η; and

• H: the set of parties that remain uncorrupted.

Security conditions / events:

• Consistency (Head): In presence of an active adversary, the following condition holds
at any point in time: For all i, j, U0 ◦ (C̄i ∪ C̄j) ̸= ⊥, i.e., no two uncorrupted parties see
conflicting transactions confirmed.

• Oblivious Liveness (Head): Consider any protocol execution in presence of a network
adversary wherein the head does not get closed for a sufficiently long period of time, and
consider an honest party pi who enters transaction tx by executing (newTx, tx) each time
after having finished a snapshot.

Then the following eventually holds: tx ∈
⋂

i∈[n] C̄i ∨ ∀i : U0 ◦ (C̄i ∪ {tx}) = ⊥, i.e., every
party will observe the transaction confirmed or every party will observe the transaction in
conflict with their confirmed transactions.5

• Soundness (Chain): In presence of an active adversary, the following condition is satisfied:
∃S̃ ⊆

⋂
i∈H Ŝi : Ufinal = U0 ◦ S̃ ̸= ⊥, i.e., the final UTxO set results from applying a set of

transactions to U0 that have been seen by all honest parties (wheras each such transaction
applies conforming to the ledger rules).

• Completeness (Chain): In presence of an active adversary, the following condition holds:
For S̃ as above,

⋃
pi∈Hcont

C̄i ⊆ S̃, i.e., all transactions seen as confirmed by an honest party
at the end of the protocol are considered.

5In particular, liveness expresses that the protocol makes progress under reasonable network conditions if no head
parties get corrupted.

24



Note that the original version of the coordinated head satisfies a stronger version of liveness
which is important for the ’user experience’ in the protocol:

• Liveness (Head): Consider any protocol execution in presence of a network adversary
wherein the head does not get closed for a sufficiently long period of time, and consider an
honest party pi who enters transaction tx by executing (newTx, tx).

Then the following eventually holds: tx ∈
⋂

i∈[n] C̄i ∨ ∀i : U0 ◦ (C̄i ∪ {tx}) = ⊥, i.e., every
party will observe the transaction confirmed or every party will observe the transaction in
conflict with their confirmed transactions.6

7.1 Proofs

Consistency.

Lemma 1 (Consistency). The coordinated head protocol satisfies the Consistency property.

Proof. Observe that C̄i ∪ C̄j ⊆ Ŝi since no transaction can be confirmed without every honest
party signing off on it. Since parties do not sign conflicting transactions (see reqSn, ‘wait’), we
have U0 ◦ C̄i ̸= ⊥, U0 ◦ C̄j ̸= ⊥, and U0 ◦ Ŝi ̸= ⊥. Thus, since C̄i ∪ C̄j ⊆ Ŝi it follows that
U0 ◦ (C̄i ∪ C̄j) ̸= ⊥

Oblivious Liveness. For all lemmas towards oblivious liveness, we assume the presence of a
network adversary, and that the head does not get closed for a sufficiently long period of time. We
call this the liveness condition.

Lemma 2. Under the liveness condition, any snapshot issued as (reqSn, s, T ) will eventually be
confirmed in the sense that every party holds a valid mulisignature on it.

Proof. Consider a party pi receiving message (reqSn, s, T ). We demonstrate that pi executes the
code past the ‘wait’ instruction of the reqSn routine.

• Passing the ‘require’ guard: Note that the snapshot leader sends the request only if ŝ = s̄,
and for s = ŝ+ 1. Thus, ŝi = ŝ since pi has already signed the snapshot for ŝ. The ‘require’
guard is thus satisfied for pi.

• Passing the ‘wait’ guard: Since the snapshot leader sees ŝ = s̄, also pi will eventually see
ŝi = s̄i. Furthermore, since all leaders are honest, it holds that Û ◦ Tres ̸= ⊥ by construction.

This implies that every party will eventually sign and acknowledge the newly created snapshot.
Finally, the ‘require’ and ‘wait’ guards of the ackSn code will be passed by every party since an
ackSn for snapshot number s can only be received for s ∈ {ŝ, ŝ+1} as an acknowledgement can only
be received for the current snapshot being worked on by pi or a snapshot that is one step ahead—
implying that everybody will hold a valid multisignature on the snapshot in consideration.

Lemma 3 (Eternal snapshot confirmation). Under the liveness condition, as long as new
transactions are issued, for any k > 0, every party eventually confirms a snapshot with sequence
number s = k.

6In particular, liveness expresses that the protocol makes progress under reasonable network conditions if no head
parties get corrupted.

25



Proof. By Lemma 2, any requested snapshot eventually gets confirmed, implying that the next
leader observes ŝ = s̄ and thus, in turn, issues a new snapshot. Thus, for any k, a snapshot is
eventually confirmed.

Lemma 4 (Oblivious Liveness). The coordinated head protocol satisfies the Oblivious Live-
ness property.

Proof. Consider the first point in time where a transaction tx enters the system by some party pi
issuing (newTx, tx), and consider the next point in time t when pi issues a snapshot.

By Lemma 3, this snapshot will eventually be issued and confirmed by all parties.

Let T̂ be the transactions to be considered by pi’s snapshot: L̂ = Ū ◦ T̂ where Ū is the snapshot
prior to pi’s. Since pi issues (reqTx, tx) after each snapshot, we have that, either,

• tx ∈ T̂ , in which case tx ∈
⋂

i∈[n] C̄i after everybody has completed this snapshot, or,

• tx /∈ T̂ , in which case L̂ ◦ tx = ⊥ (tx is still in the wait queue of (reqTx, tx). After everybody
has completed this snapshot, it thus holds that ∀i : U0 ◦ C̄i = L̂, and thus, that ∀i : U0 ◦ (C̄i ∪
{tx}) = ⊥.

In both cases, the lemma follows.

Soundness and completeness.

Lemma 5 (Soundness). The basic head protocol satisfies the Soundness property.

Proof. Let T be the set of transactions such that Ufinal = U0◦T . Since Ufinal is multi-signed, it holds
that T ⊆ Ŝi (T is seen) by every honest party in the head. Furthermore, since honest signatures are
only issued for valid transaction, Ufinal ̸= ⊥ (i.e., Ufinal is a valid state), and soundness follows.

Lemma 6 (Completeness). The basic head protocol satisfies the Completeness property.

Proof. Consider all parties pi ∈ Hcont. Since the close/contest process finally accepts the lat-
est multi-signed snapshot, it holds that Ufinal.s ≥ maxpi∈Hcont(s̄i), and thus that

⋃
pi∈Hcont

C̄i ⊆⋂
pi∈H Ŝi, and completeness follows.

26



References

[1] Extended UTXO-2 model. https://github.com/hydra-supplementary-material/eutxo-

spec/blob/master/extended-utxo-specification.pdf.

[2] A formal specification of the cardano ledger. https://github.com/input-output-hk/

cardano-ledger/releases/latest/download/shelley-ledger.pdf.

[3] A formal specification of the cardano ledger integrating plutus core. https://github.com/

input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf.

[4] Hydra repository. https://github.com/input-output-hk/hydra.

[5] Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. A formal model of
Bitcoin transactions. In Financial Cryptography and Data Security - 22nd International Con-
ference, FC 2018, Nieuwpoort, Curaçao, February 26 - March 2, 2018, Revised Selected Papers,
pages 541–560, 2018.

[6] Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian,
Michael Peyton Jones, and Philip Wadler. The extended UTxO model. In 4th Workshop
on Trusted Smart Contracts, 2020. http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20_paper_

25.pdf.

[7] Manuel M. T. Chakravarty, James Chapman, Kenneth M. Mackenzie, Orestis Melkonian,
Jann, Müller, Michael Peyton Jones, Polina Vinogradova, Philip Wadler, Joachim, and Zah-
nentferner. Utxoma: Utxo with multi-asset support. 2020.

[8] Manuel MT Chakravarty, Sandro Coretti, Matthias Fitzi, Peter Gazi, Philipp Kant, Aggelos
Kiayias, and Alexander Russell. Hydra: Fast isomorphic state channels. Cryptology ePrint
Archive, 2020.

[9] Kazuharu Itakura and Katsuhiro Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC Research & Development, (71):1–8, 1983.

[10] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: Ex-
tended abstract. pages 245–254, 2001.

[11] Joachim Zahnentferner. An abstract model of UTxO-based cryptocurrencies with scripts.
IACR Cryptology ePrint Archive, 2018:469, 2018.

27

https://github.com/hydra-supplementary-material/eutxo-spec/blob/master/extended-utxo-specification.pdf
https://github.com/hydra-supplementary-material/eutxo-spec/blob/master/extended-utxo-specification.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf
https://github.com/input-output-hk/hydra
http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20_paper_25.pdf
http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20_paper_25.pdf

	Introduction
	Protocol Overview
	Opening the head
	The Coordinated Head protocol
	Closing the head
	Differences

	Preliminaries
	Notation
	Public key multi-signature scheme
	Extended UTxO

	Protocol Setup
	On-chain Protocol
	Init transaction
	Commit Transaction
	CollectCom Transaction
	Abort Transaction
	Close Transaction
	Contest Transaction
	Fan-Out Transaction

	Off-Chain Protocol
	Assumptions
	Notation
	Variables
	Protocol flow
	Rollbacks and protocol changes

	Security (WIP — Iteration 1)
	Proofs


